Show simple item record

dc.contributor.advisorNurhadryani, Yani
dc.contributor.advisorAhmad, Hafidlotul Fatimah
dc.contributor.authorFerdiansah, Muhammad Adi Satria
dc.date.accessioned2025-08-25T07:08:34Z
dc.date.available2025-08-25T07:08:34Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/170293
dc.description.abstractDesa memiliki peran strategis dalam pembangunan nasional, namun banyak desa berkembang di Indonesia masih menghadapi tantangan dalam menemukan inovasi yang sesuai untuk diterapkan. Knowledge Management System (KMS) Desa Digital telah dikembangkan untuk mengelola dan menyebarkan berbagai inovasi desa, namun banyaknya pilihan dan tingginya indeks inovasi nasional menyulitkan pencarian yang relevan. Penelitian ini bertujuan mengembangkan sistem rekomendasi berbasis Content-Based Filtering (CBF) yang menyarankan inovasi berdasarkan kesamaan deskripsi inovasi yang telah diterapkan sebelumnya. Sistem diimplementasikan dalam KMS menggunakan FastAPI untuk backend, Firestore sebagai basis data, dan React untuk antarmuka pengguna. Evaluasi dilakukan dengan membandingkan hasil rekomendasi terhadap data ground-truth pada 10 inovasi uji, masing-masing dengan tiga item relevan, dan mengukur lima hasil rekomendasi teratas. Hasil menunjukkan rata-rata precision sebesar 0,36, recall 0,35, F1-score 0,35 dan Mean Average Precision (MAP) 0,48. Temuan ini menunjukkan bahwa sistem mampu mengidentifikasi sebagian inovasi relevan berdasarkan kemiripan deskripsi, meskipun masih terdapat keterbatasan akibat perbedaan persepsi semantik antara model dan pakar. Implikasi penelitian ini mengarah pada perlunya perluasan fitur representasi untuk meningkatkan akurasi relevansi inovasi di masa depan.
dc.description.abstractVillages play a strategic role in national development, yet many developing villages in Indonesia still face challenges in identifying suitable innovations for implementation. The Digital Village Knowledge Management System (KMS) has been developed to manage and disseminate various village innovations, but the abundance of available innovations and the increasing national innovation index make relevant discovery difficult. This study aims to develop a recommendation system based on Content-Based Filtering (CBF) that suggests innovations based on the similarity of descriptions to those already implemented. The system is integrated into the KMS using FastAPI for the backend, Firestore as the database, and React for the user interface. Evaluation was conducted by comparing recommendation results against ground-truth data for 10 test innovations, each with three relevant items, using the top five recommendations. The results show an average precision of 0.36, recall of 0.35, F1-score 0,35 and a Mean Average Precision (MAP) of 0.48. These findings indicate that the system can identify some relevant innovations based on textual similarity, although limitations remain due to semantic differences between the model’s approach and expert judgment. The implications of this study highlight the need for richer feature representations to improve the accuracy of innovation relevance in the future.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePengembangan Sistem Rekomendasi Menggunakan Content-Based Filtering pada KMS Desa Digitalid
dc.title.alternativeDevelopment of a Recommendation System Using Content-Based Filtering on the KMS Desa Digital
dc.typeSkripsi
dc.subject.keywordKnowledge Management Systemid
dc.subject.keywordContent-Based Filteringid
dc.subject.keywordSistem rekomendasiid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record