View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Sistem Rekomendasi Menggunakan Content-Based Filtering pada KMS Desa Digital

      Thumbnail
      View/Open
      Cover (2.280Mb)
      Fulltext (3.214Mb)
      Lampiran (2.090Mb)
      Date
      2025
      Author
      Ferdiansah, Muhammad Adi Satria
      Nurhadryani, Yani
      Ahmad, Hafidlotul Fatimah
      Metadata
      Show full item record
      Abstract
      Desa memiliki peran strategis dalam pembangunan nasional, namun banyak desa berkembang di Indonesia masih menghadapi tantangan dalam menemukan inovasi yang sesuai untuk diterapkan. Knowledge Management System (KMS) Desa Digital telah dikembangkan untuk mengelola dan menyebarkan berbagai inovasi desa, namun banyaknya pilihan dan tingginya indeks inovasi nasional menyulitkan pencarian yang relevan. Penelitian ini bertujuan mengembangkan sistem rekomendasi berbasis Content-Based Filtering (CBF) yang menyarankan inovasi berdasarkan kesamaan deskripsi inovasi yang telah diterapkan sebelumnya. Sistem diimplementasikan dalam KMS menggunakan FastAPI untuk backend, Firestore sebagai basis data, dan React untuk antarmuka pengguna. Evaluasi dilakukan dengan membandingkan hasil rekomendasi terhadap data ground-truth pada 10 inovasi uji, masing-masing dengan tiga item relevan, dan mengukur lima hasil rekomendasi teratas. Hasil menunjukkan rata-rata precision sebesar 0,36, recall 0,35, F1-score 0,35 dan Mean Average Precision (MAP) 0,48. Temuan ini menunjukkan bahwa sistem mampu mengidentifikasi sebagian inovasi relevan berdasarkan kemiripan deskripsi, meskipun masih terdapat keterbatasan akibat perbedaan persepsi semantik antara model dan pakar. Implikasi penelitian ini mengarah pada perlunya perluasan fitur representasi untuk meningkatkan akurasi relevansi inovasi di masa depan.
       
      Villages play a strategic role in national development, yet many developing villages in Indonesia still face challenges in identifying suitable innovations for implementation. The Digital Village Knowledge Management System (KMS) has been developed to manage and disseminate various village innovations, but the abundance of available innovations and the increasing national innovation index make relevant discovery difficult. This study aims to develop a recommendation system based on Content-Based Filtering (CBF) that suggests innovations based on the similarity of descriptions to those already implemented. The system is integrated into the KMS using FastAPI for the backend, Firestore as the database, and React for the user interface. Evaluation was conducted by comparing recommendation results against ground-truth data for 10 test innovations, each with three relevant items, using the top five recommendations. The results show an average precision of 0.36, recall of 0.35, F1-score 0,35 and a Mean Average Precision (MAP) of 0.48. These findings indicate that the system can identify some relevant innovations based on textual similarity, although limitations remain due to semantic differences between the model’s approach and expert judgment. The implications of this study highlight the need for richer feature representations to improve the accuracy of innovation relevance in the future.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170293
      Collections
      • UT - Computer Science [88]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository