View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      PERANCANGAN MODEL DETEKSI KANOPI JAMBU BIJI (Psidium guajava L.) BERBASIS SEGMENTASI CITRA DRONE MULTISPEKTRAL DAN DEEP LEARNING

      Thumbnail
      View/Open
      Cover (449.4Kb)
      Fulltext (6.640Mb)
      Lampiran (308.7Kb)
      Date
      2025
      Author
      alfarizi, Farhan ali
      Supriyanto
      Metadata
      Show full item record
      Abstract
      Pemantauan kondisi tanaman secara spasial menjadi aspek penting dalam pengelolaan kebun buah, termasuk tanaman jambu biji (Psidium guajava L). Citra multispektral dari drone menyediakan data resolusi tinggi yang mampu merekam perbedaan spektral vegetasi secara detail. Namun, segmentasi objek kanopi secara akurat masih menjadi tantangan, terutama dalam membedakan kanopi pohon dari latar belakang seperti tanah, rumput, dan belukar. Penelitian ini merancang model segmentasi berbasis deep learning dengan arsitektur U-Net untuk memisahkan kanopi jambu biji dari latar belakang menggunakan input citra multispektral drone yang telah diproses melalui band stacking dan perhitungan indeks vegetasi. Model dilatih menggunakan citra patch berukuran 256 × 256 piksel dan diuji performanya menggunakan metrik evaluasi seperti Precision, Recall, F1-Score, dan Intersection over Union (IoU). Hasil menunjukkan bahwa model mampu mengenali objek kanopi dengan akurasi yang tinggi. Temuan ini mengindikasikan bahwa model yang dirancang efektif dalam segmentasi spasial objek vegetasi, serta dapat beroperasi dengan baik dalam memisahkan kanopi pohon jambu biji dari tutupan lahan lain seperti tanah, rumput, dan belukar.
       
      Spatial monitoring of crop conditions is a crucial aspect in managing fruit orchards, including guava (Psidium guajava L.) plantations. Multispectral imagery from Unmanned Aerial Vehicles (UAV) or Drone, provides high-resolution data capable of capturing detailed spectral differences in vegetation. Segmenting canopy objects remains a challenge, particularly in distinguishing tree canopies from backgrounds such as soil, grass, and shrubs. This study proposes a deep learningbased segmentation model using the U-Net architecture to separate guava canopies from the background by utilizing drone multispectral imagery that has been preprocessed through band stacking and vegetation index calculation. The model was trained on 256×256 pixel image patches and evaluated using metrics such as Precision, Recall, F1-Score, and Intersection over Union (IoU). The results show that the model is capable of recognizing canopy objects with high accuracy. This finding indicates that the designed model is effective in spatial segmentation of vegetation objects and can perform well in separating guava tree canopies from other land cover such as soil, grass, and shrubs
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170194
      Collections
      • UT - Agricultural and Biosystem Engineering [3588]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository