Show simple item record

dc.contributor.advisorHerdiyeni, Yeni
dc.contributor.advisorAhmad, Hafidlotul Fatimah
dc.contributor.authorYudha, Ayyas Mumtaz
dc.date.accessioned2025-08-19T23:04:49Z
dc.date.available2025-08-19T23:04:49Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169864
dc.description.abstractWilayah Pengelolaan Perikanan (WPP) 714, yang mencakup Laut Banda, merupakan salah satu kawasan perairan Indonesia yang kaya secara ekologi dan produktivitas perikanan. Salah satu dinamika oseanografis penting di wilayah ini adalah fenomena upwelling, yaitu proses naiknya massa air laut yang lebih dingin dan kaya nutrien ke permukaan. Penelitian ini bertujuan menganalisis karakteristik upwelling, membangun model deteksi, dan prediksi berbasis data suhu permukaan laut (SST) dan klorofil-a. Deteksi upwelling dilakukan dengan pendekatan IQR serta metode Time Window. Klasifikasi intensitas upwelling dikelompokkan menjadi Low, Medium, dan High. Model deteksi dikembangkan menggunakan Long Short-Term Memory (LSTM) dan mencapai akurasi hingga 95%. Selain itu, model prediksi untuk SST dan klorofil-a juga dibangun, dengan hasil evaluasi R² sebesar 0,892 untuk SST dan 0,648 untuk klorofil-a.
dc.description.abstractThe Fisheries Management Area (FMA) 714, encompassing the Banda Sea, is one of Indonesia’s ecologically rich and highly productive fishing grounds. One of the key oceanographic dynamics in this region is the upwelling phenomenon, a process in which cooler, nutrient-rich seawater rises to the surface. This study aims to analyze the characteristics of upwelling and develop detection and prediction models based on sea surface temperature (SST) and chlorophyll-a data. Upwelling detection was performed using the Interquartile Range (IQR) approach combined with the Time Window method. Upwelling intensity was classified into Low, Medium, and High categories. The detection model was developed using a Long Short-Term Memory (LSTM) network, achieving an accuracy of up to 95%. In addition, prediction models for SST and chlorophyll-a were constructed, yielding R² values of 0.892 for SST and 0.648 for chlorophyll-a.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleANALISIS DAN PEMBUATAN MODEL LSTM UNTUK DETEKSI UPWELLING BERBASIS KLOROFIL-A DAN SUHU PERMUKAAN LAUT DI WPP 714id
dc.title.alternativeANALYSIS AND LSTM MODEL DEVELOPMENT FOR UPELWELLING DETECTION BASED ON CHLOROPHYLL-A AND SEA SURFACE TEMPERATURE IN FMA 714
dc.typeSkripsi
dc.subject.keywordUpwellingid
dc.subject.keywordklorofil-aid
dc.subject.keywordsuhu permukaan lautid
dc.subject.keyworddeep learningid
dc.subject.keywordLong Short-Term Memory (LSTM)id
dc.subject.keywordWPP 714id


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record