View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      ANALISIS DAN PEMBUATAN MODEL LSTM UNTUK DETEKSI UPWELLING BERBASIS KLOROFIL-A DAN SUHU PERMUKAAN LAUT DI WPP 714

      Thumbnail
      View/Open
      Cover (824.1Kb)
      Fulltext (3.083Mb)
      Lampiran (323.0Kb)
      Date
      2025
      Author
      Yudha, Ayyas Mumtaz
      Herdiyeni, Yeni
      Ahmad, Hafidlotul Fatimah
      Metadata
      Show full item record
      Abstract
      Wilayah Pengelolaan Perikanan (WPP) 714, yang mencakup Laut Banda, merupakan salah satu kawasan perairan Indonesia yang kaya secara ekologi dan produktivitas perikanan. Salah satu dinamika oseanografis penting di wilayah ini adalah fenomena upwelling, yaitu proses naiknya massa air laut yang lebih dingin dan kaya nutrien ke permukaan. Penelitian ini bertujuan menganalisis karakteristik upwelling, membangun model deteksi, dan prediksi berbasis data suhu permukaan laut (SST) dan klorofil-a. Deteksi upwelling dilakukan dengan pendekatan IQR serta metode Time Window. Klasifikasi intensitas upwelling dikelompokkan menjadi Low, Medium, dan High. Model deteksi dikembangkan menggunakan Long Short-Term Memory (LSTM) dan mencapai akurasi hingga 95%. Selain itu, model prediksi untuk SST dan klorofil-a juga dibangun, dengan hasil evaluasi R² sebesar 0,892 untuk SST dan 0,648 untuk klorofil-a.
       
      The Fisheries Management Area (FMA) 714, encompassing the Banda Sea, is one of Indonesia’s ecologically rich and highly productive fishing grounds. One of the key oceanographic dynamics in this region is the upwelling phenomenon, a process in which cooler, nutrient-rich seawater rises to the surface. This study aims to analyze the characteristics of upwelling and develop detection and prediction models based on sea surface temperature (SST) and chlorophyll-a data. Upwelling detection was performed using the Interquartile Range (IQR) approach combined with the Time Window method. Upwelling intensity was classified into Low, Medium, and High categories. The detection model was developed using a Long Short-Term Memory (LSTM) network, achieving an accuracy of up to 95%. In addition, prediction models for SST and chlorophyll-a were constructed, yielding R² values of 0.892 for SST and 0.648 for chlorophyll-a.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/169864
      Collections
      • UT - Computer Science [88]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository