Show simple item record

dc.contributor.advisorSukoco, Heru
dc.contributor.advisorWijaya, Sony Hartono
dc.contributor.authorHAKIM, MUHAMMAD LUQMAN
dc.date.accessioned2025-08-15T06:56:06Z
dc.date.available2025-08-15T06:56:06Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169399
dc.description.abstractLoRaWAN adalah protokol jaringan berdaya rendah dengan jangkauan luas sehingga ideal untuk aplikasi IoT di sektor pertanian. Salah satu fitur utama LoRaWAN adalah Adaptive Data Rate (ADR), yang menyesuaikan kecepatan data dan daya pancar untuk meningkatkan efisiensi transmisi. Penelitian ini menganalisis berbagai implementasi ADR dengan simulator FLoRa berbasis OMNeT++. Aspek yang diuji pada penelitian ini adalah data extraction rate (DER) dan network energy consumption (NEC). Skenario penelitian menggunakan kombinasi lingkungan urban/suburban dan variabilitas ideal/tipikal. Hasil penelitian menunjukkan algoritma ADR default memberikan keandalan transmisi yang tidak memuaskan terutama pada skenario dengan variabilitas tipikal. Pada penelitian ini penulis mengajukan algoritma ADR berbasis reinforcement learning yaitu dengan Q-Learning. Pendekatan Q-Learning memberikan hasil DER dan NEC yang lebih baik dari algoritma default ADR di setiap skenario yang diuji.
dc.description.abstractLoRaWAN is a low-power wide-area network protocol that is ideal for IoT applications in the agricultural sector. One of the key features of LoRaWAN is Adaptive Data Rate (ADR), which adjusts data rate and transmission power to improve transmission efficiency. This study analyzes various ADR implementations using the FLoRa simulator based on OMNeT++. The aspects evaluated in this research are the Data Extraction Rate (DER) and Network Energy Consumption (NEC). The simulation scenarios combine urban/suburban environments with ideal/typical variability. The results show that the default ADR algorithm provides unsatisfactory transmission reliability, especially in scenarios with typical variability. This study proposes a reinforcement learning-based ADR algorithm using Q-Learning. The Q-Learning approach yields better DER and NEC performance than the default ADR algorithm across all tested scenarios.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleAnalisis Kinerja Adaptive Data Rate (ADR) dalam Meningkatkan Keandalan Transmisi dan Efisiensi Daya pada Jaringan LoRaWANid
dc.title.alternativeAdaptive Data Rate (ADR) Performance Analysis in Improving Transmission Reliability and Power Efficiency in LoRaWAN Networks
dc.typeSkripsi
dc.subject.keywordFloraid
dc.subject.keywordQ-Learningid
dc.subject.keywordAdaptive data rateid
dc.subject.keywordLoRaWANid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record