View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kinerja Adaptive Data Rate (ADR) dalam Meningkatkan Keandalan Transmisi dan Efisiensi Daya pada Jaringan LoRaWAN

      Thumbnail
      View/Open
      Cover (374.3Kb)
      Fulltext (933.2Kb)
      Lampiran (261.6Kb)
      Date
      2025
      Author
      HAKIM, MUHAMMAD LUQMAN
      Sukoco, Heru
      Wijaya, Sony Hartono
      Metadata
      Show full item record
      Abstract
      LoRaWAN adalah protokol jaringan berdaya rendah dengan jangkauan luas sehingga ideal untuk aplikasi IoT di sektor pertanian. Salah satu fitur utama LoRaWAN adalah Adaptive Data Rate (ADR), yang menyesuaikan kecepatan data dan daya pancar untuk meningkatkan efisiensi transmisi. Penelitian ini menganalisis berbagai implementasi ADR dengan simulator FLoRa berbasis OMNeT++. Aspek yang diuji pada penelitian ini adalah data extraction rate (DER) dan network energy consumption (NEC). Skenario penelitian menggunakan kombinasi lingkungan urban/suburban dan variabilitas ideal/tipikal. Hasil penelitian menunjukkan algoritma ADR default memberikan keandalan transmisi yang tidak memuaskan terutama pada skenario dengan variabilitas tipikal. Pada penelitian ini penulis mengajukan algoritma ADR berbasis reinforcement learning yaitu dengan Q-Learning. Pendekatan Q-Learning memberikan hasil DER dan NEC yang lebih baik dari algoritma default ADR di setiap skenario yang diuji.
       
      LoRaWAN is a low-power wide-area network protocol that is ideal for IoT applications in the agricultural sector. One of the key features of LoRaWAN is Adaptive Data Rate (ADR), which adjusts data rate and transmission power to improve transmission efficiency. This study analyzes various ADR implementations using the FLoRa simulator based on OMNeT++. The aspects evaluated in this research are the Data Extraction Rate (DER) and Network Energy Consumption (NEC). The simulation scenarios combine urban/suburban environments with ideal/typical variability. The results show that the default ADR algorithm provides unsatisfactory transmission reliability, especially in scenarios with typical variability. This study proposes a reinforcement learning-based ADR algorithm using Q-Learning. The Q-Learning approach yields better DER and NEC performance than the default ADR algorithm across all tested scenarios.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/169399
      Collections
      • UT - Computer Science [88]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository