View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Model Var Dan Var-Lstm Dalam Memprediksi Kedatangan Wisatawan Di Bandara Ngurah Rai Dan Nilai Tukar Dolar

      Thumbnail
      View/Open
      Cover (8.461Mb)
      Fulltext (8.525Mb)
      Lampiran (8.449Mb)
      Date
      2025
      Author
      Zafira, Gladys Adya
      Angraini, Yenni
      Indahwati
      Metadata
      Show full item record
      Abstract
      Pariwisata memegang peranan penting dalam perekonomian Indonesia dan memberikan kontribusi signifikan terhadap pembangunan nasional. Bandara Ngurah Rai di Bali berperan sebagai pintu gerbang utama bagi kedatangan wisatawan mancanegara di Indonesia. Fluktuasi nilai tukar rupiah terhadap dolar Amerika Serikat (AS) merupakan salah satu faktor yang memengaruhi jumlah kunjungan wisatawan. Dalam analisis deret waktu, model Vector Autoregressive (VAR) digunakan untuk menganalisis hubungan dinamis antarpeubah deret waktu dengan mempertimbangkan pengaruh nilai masa lalu dari masing-masing peubah maupun peubah lainnya. Sementara itu, model Long Short-Term Memory (LSTM) diterapkan untuk mengatasi pola nonlinier pada data yang bersifat fluktuatif. Dalam upaya meningkatkan akurasi peramalan, metode sliding window cross validation diterapkan pada kedua model dengan tujuan menentukan lag optimal pada VAR dan hyperparameter tuning pada LSTM melalui grid search. Integrasi kedua pendekatan ini dalam model hybrid VAR-LSTM memungkinkan analisis pola data yang lebih komprehensif. Hasil penelitian menunjukkan bahwa model hybrid VAR LSTM memberikan akurasi peramalan yang lebih baik dibandingkan model VAR, dengan nilai Mean Absolute Percentage Error (MAPE) sebesar 0,20% untuk nilai tukar IDR/USD dan 7,36% untuk jumlah wisatawan mancanegara di Bali.
       
      Tourism plays a vital role in Indonesia’s economy, significantly contributing to national development. The International Ngurah Rai Airport in Bali serves as a key gateway for international tourist arrivals. Fluctuations in the Indonesian Rupiah (IDR) exchange rate against the United States Dollar (USD) are among the factors influencing the volume of tourist visits. In time series analysis, the Vector Autoregressive (VAR) model captures dynamic relationships among multiple variables by modeling each as a function of its own lagged values and those of other variables. In addition, the Long Short-Term Memory (LSTM) model is used to identify nonlinear patterns in highly volatile data. This study applied sliding window cross-validation to both models to enhance forecasting performance. In the VAR model, it was used to determine the optimal lag length, while in the LSTM model, it was combined with grid search for hyperparameter tuning. The integration of these approaches into the hybrid VAR-LSTM model enabled a more comprehensive analysis of temporal patterns. The results indicated that the hybrid VAR-LSTM model significantly improved forecasting accuracy compared to the traditional VAR model, achieving Mean Absolute Percentage Error (MAPE) values of 0.20% for the IDR/USD exchange rate and 7.36% for international tourist arrivals in Bali.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/169307
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository