Show simple item record

dc.contributor.advisorNurmansyah, Ali
dc.contributor.advisorTondok, Efi Toding
dc.contributor.authorAZKIA, LAITSA NAILIL
dc.date.accessioned2025-08-14T10:05:35Z
dc.date.available2025-08-14T10:05:35Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169238
dc.description.abstractCabai merupakan komoditas hortikultura bernilai ekonomi tinggi, tetapi tanaman ini rentan terhadap berbagai penyakit seperti busuk buah antraknosa dan bercak Cercospora yang dapat menurunkan produksinya secara signifikan. Saat ini, deteksi penyakit masih dilakukan secara konvensional dengan mengandalkan pada observasi visual yang dapat memberikan hasil kurang akurat dan memerlukan waktu lama. Penelitian ini bertujuan mengembangkan metode pengamatan baru berbasis deep learning untuk mendeteksi dua penyakit penting tanaman cabai. Data berupa foto gejala gangguan daun dan buah diperoleh langsung dari pertanaman cabai di lahan. Data foto diklasifikasikan ke dalam empat kelas, yaitu busuk buah antraknosa, bercak Cercospora, buah sehat, dan daun sehat. Model deteksi disusun menggunakan algoritma YOLOv11 dengan bahasa pemrograman Python dengan konfigurasi batch size 16 dan 100 epoch. Model yang dihasilkan dapat mendeteksi gejala gangguan penyakit dengan nilai accuracy 95,2%, precision 95,9%, recall 94,1%, mAP@50 sebesar 96,2%, dan F1-score 94,9% yang menunjukkan kemampuan model dapat mendeteksi gejala penyakit secara akurat dan konsisten. Dengan hasil ini membuka peluang penerapan sistem deteksi berbasis kecerdasan buatan untuk identifikasi penyakit oleh petani secara cepat dan tepat. Model ini juga berpotensi dapat dikembangkan ke dalam aplikasi mobile untuk penerapan yang lebih praktis di lapangan.
dc.description.abstractChili pepper is a high-value horticultural commodity, but it is susceptible to various diseases such as anthracnose fruit rot and Cercospora leaf spot, which can significantly reduce its yield. Currently, disease detection is still carried out conventionally, relying on visual observation that may produce less accurate results and require considerable time. This study aims to develop a novel deep learning- based observation method to detect two major chili diseases. Data in the form of images showing symptoms on leaves and fruits were collected directly from chili plantations. The images were classified into four categories: anthracnose fruit rot, Cercospora leaf spot, healthy fruit, and healthy leaves. The detection model was developed using the YOLOv11 algorithm with the Python programming language, configured with a batch size of 16 and 100 epochs. The resulting model was able to detect disease symptoms with an accuracy of 95.2%, precision of 95.9%, recall of 94.1%, mAP@50 of 96.2%, and an F1-score of 94.9%, indicating its ability to identify disease symptoms accurately and consistently. These results open opportunities for the application of artificial intelligence-based detection systems to enable farmers to identify plant diseases quickly and accurately. Furthermore, the model has the potential to be developed into a mobile application for more practical field implementation.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePengembangan Sistem Cerdas untuk Deteksi Dua Penyakit Penting Tanaman Cabai Berbasis Deep Learningid
dc.title.alternativeDevelopment of a Smart System for Detecting Two Major Chili Diseases Based on Deep Learning
dc.typeSkripsi
dc.subject.keywordartificial intelligenceid
dc.subject.keywordCercospora sp.id
dc.subject.keywordcolletotrichum spp.id
dc.subject.keywordsmart monitoringid
dc.subject.keywordYOLOv11id


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record