View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Plant Protection
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Plant Protection
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Sistem Cerdas untuk Deteksi Dua Penyakit Penting Tanaman Cabai Berbasis Deep Learning

      Thumbnail
      View/Open
      Cover (477.2Kb)
      Fulltext (836.7Kb)
      Date
      2025
      Author
      AZKIA, LAITSA NAILIL
      Nurmansyah, Ali
      Tondok, Efi Toding
      Metadata
      Show full item record
      Abstract
      Cabai merupakan komoditas hortikultura bernilai ekonomi tinggi, tetapi tanaman ini rentan terhadap berbagai penyakit seperti busuk buah antraknosa dan bercak Cercospora yang dapat menurunkan produksinya secara signifikan. Saat ini, deteksi penyakit masih dilakukan secara konvensional dengan mengandalkan pada observasi visual yang dapat memberikan hasil kurang akurat dan memerlukan waktu lama. Penelitian ini bertujuan mengembangkan metode pengamatan baru berbasis deep learning untuk mendeteksi dua penyakit penting tanaman cabai. Data berupa foto gejala gangguan daun dan buah diperoleh langsung dari pertanaman cabai di lahan. Data foto diklasifikasikan ke dalam empat kelas, yaitu busuk buah antraknosa, bercak Cercospora, buah sehat, dan daun sehat. Model deteksi disusun menggunakan algoritma YOLOv11 dengan bahasa pemrograman Python dengan konfigurasi batch size 16 dan 100 epoch. Model yang dihasilkan dapat mendeteksi gejala gangguan penyakit dengan nilai accuracy 95,2%, precision 95,9%, recall 94,1%, mAP@50 sebesar 96,2%, dan F1-score 94,9% yang menunjukkan kemampuan model dapat mendeteksi gejala penyakit secara akurat dan konsisten. Dengan hasil ini membuka peluang penerapan sistem deteksi berbasis kecerdasan buatan untuk identifikasi penyakit oleh petani secara cepat dan tepat. Model ini juga berpotensi dapat dikembangkan ke dalam aplikasi mobile untuk penerapan yang lebih praktis di lapangan.
       
      Chili pepper is a high-value horticultural commodity, but it is susceptible to various diseases such as anthracnose fruit rot and Cercospora leaf spot, which can significantly reduce its yield. Currently, disease detection is still carried out conventionally, relying on visual observation that may produce less accurate results and require considerable time. This study aims to develop a novel deep learning- based observation method to detect two major chili diseases. Data in the form of images showing symptoms on leaves and fruits were collected directly from chili plantations. The images were classified into four categories: anthracnose fruit rot, Cercospora leaf spot, healthy fruit, and healthy leaves. The detection model was developed using the YOLOv11 algorithm with the Python programming language, configured with a batch size of 16 and 100 epochs. The resulting model was able to detect disease symptoms with an accuracy of 95.2%, precision of 95.9%, recall of 94.1%, mAP@50 of 96.2%, and an F1-score of 94.9%, indicating its ability to identify disease symptoms accurately and consistently. These results open opportunities for the application of artificial intelligence-based detection systems to enable farmers to identify plant diseases quickly and accurately. Furthermore, the model has the potential to be developed into a mobile application for more practical field implementation.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/169238
      Collections
      • UT - Plant Protection [2511]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository