View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - School of Data Science, Mathematic and Informatics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - School of Data Science, Mathematic and Informatics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Spatiotemporal Sebaran Titik Panas dan Particulate Matter (PM2.5) di Provinsi Riau, Jambi dan Sumatera Selatan

      Thumbnail
      View/Open
      Cover (253.3Kb)
      Fulltext (1.668Mb)
      Lampiran (398.5Kb)
      Date
      2025
      Author
      Lukman, Yasmin
      Sitanggang, Imas Sukaesih
      Hardhienata, Medria Kusuma Dewi
      Metadata
      Show full item record
      Abstract
      Kebakaran hutan dan lahan (karhutla) di Indonesia berdampak signifikan terhadap kualitas udara dan kesehatan masyarakat, khususnya melalui peningkatan konsentrasi partikulat halus (PM2.5). Penelitian ini bertujuan untuk menganalisis pola spasial-temporal titik panas dan estimasi konsentrasi PM2.5 di Provinsi Riau, Jambi, dan Sumatera Selatan selama periode Agustus hingga Oktober 2023. Titik panas dari citra satelit MODIS dianalisis menggunakan dua pendekatan utama. Pertama, algoritma Spatio-Temporal DBSCAN (ST-DBSCAN) digunakan untuk mengidentifikasi klaster kebakaran berdasarkan kedekatan spasial (e1) dan temporal (e2), yang menghasilkan klaster dengan akurasi spasial baik dan tingkat noise rendah, termasuk di Provinsi Sumatera Selatan yang memiliki titik panas terbanyak dan sangat padat. Kedua, metode Spatio-Temporal Kernel Density Estimation (STKDE) diterapkan untuk memvisualisasikan kepadatan kemunculan titik panas secara kontinu dalam ruang dan waktu. STKDE menggunakan voxel berukuran 1 × 1 km secara spasial dan 1 hari secara temporal, yang memungkinkan analisis lebih detail terhadap distribusi dan dinamika kebakaran; density ratio tertinggi (0,55) ditemukan di Sumatera Selatan, menunjukkan distribusi kejadian yang cukup merata. Estimasi PM2.5 diperoleh dengan mengonversi nilai Aerosol Optical Depth (AOD) dari MODIS menggunakan model empiris NASA ARSET. Rata-rata estimasi PM2.5 selama masa studi mencapai 50,51 µg/m³ di Riau, 48,16 µg/m³ di Jambi, dan 41,59 µg/m³ di Sumatera Selatan, dengan konsentrasi tertinggi tercatat di Jambi pada Oktober (92,34 µg/m³), melebihi ambang batas WHO sebesar 50 µg/m³. Pendekatan terintegrasi ST-DBSCAN dan STKDE ini memberikan gambaran komprehensif mengenai sebaran spasial-temporal titik panas serta dampaknya terhadap kualitas udara, yang bermanfaat untuk mitigasi risiko kesehatan dan pengembangan sistem peringatan dini berbasis data satelit.
       
      Forest and land fires (karhutla) in Indonesia have significant impacts on air quality and public health, particularly through the increase of fine particulate matter (PM2.5) concentrations. This study aims to analyze the spatio-temporal patterns of fire hotspots and estimate PM2.5 concentrations in Riau, Jambi, and South Sumatra Provinces during August–October 2023. Hotspots from MODIS satellite imagery were analyzed using two main approaches. First, the Spatio-Temporal DBSCAN (ST-DBSCAN) algorithm was applied to identify fire clusters based on spatial (e1) and temporal (e2) proximity, yielding clusters with good spatial accuracy and low noise levels, including in South Sumatra, which recorded the highest and most densely concentrated number of hotspots. Second, the Spatio-Temporal Kernel Density Estimation (STKDE) method was employed to visualize hotspot density continuously across space and time. STKDE utilized voxels measuring 1 × 1 km spatially and 1 day temporally, enabling a more detailed analysis of fire distribution and dynamics; the highest density ratio (0.55) was observed in South Sumatra, indicating a relatively uniform distribution of fire occurrences. PM2.5 concentrations were estimated by converting MODIS Aerosol Optical Depth (AOD) values using the NASA ARSET empirical model. Average PM2.5 concentrations during the study period reached 50.51 µg/m³ in Riau, 48.16 µg/m³ in Jambi, and 41.59 µg/m³ in South Sumatra, with the highest concentration recorded in Jambi in October (92.34 µg/m³), exceeding the WHO daily limit of 50 µg/m³. The integrated ST-DBSCAN and STKDE approach provides a comprehensive depiction of hotspot spatio-temporal distribution and its impacts on air quality, offering valuable insights for health risk mitigation and the development of satellite-based early warning systems.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/169217
      Collections
      • MT - School of Data Science, Mathematic and Informatics [69]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository