Pemodelan Distribusi Aliran Udara Guna Meningkatkan Kenyamanan Termal Pekerja di Ruang Boiler Cangkang Kelapa Sawit
Abstract
Ruang boiler cangkang kelapa sawit merupakan area industri dengan beban panas tinggi yang berpotensi menimbulkan risiko heat stress dan menurunkan produktivitas kerja. Penelitian bertujuan untuk meningkatkan kenyamanan termal di ruang boiler melalui rekayasa ventilasi dan evaluasi berbasis pemodelan distribusi aliran udara. Metode yang digunakan mencakup pengukuran parameter fisik (suhu, kelembapan, kecepatan angin), perhitungan PMV, PPD, dan THI, serta simulasi Computational Fluid Dynamics (CFD) menggunakan perangkat lunak ANSYS Fluent. Perbaikan dilakukan dengan menambah ventilasi kisi selebar 30 m² dan tiga jalusi selebar 2,16 m², menghasilkan total luas bukaan 32,16 m². Hasil pengukuran menunjukkan nilai PMV hingga +3,9, PPD 90–100%, dan THI 30,8–33,1°C sebelum intervensi. Setelah penerapan berupa penambahan bukaan ventilasi kisi dan jalusi, simulasi menunjukkan peningkatan kecepatan aliran udara >3 m/s dan penurunan suhu >9°C di zona panas. Jalusi terbukti efektif mengurangi suhu dan kelembapan tanpa konsumsi energi listrik, serta menurunkan indeks termal. Strategi ini memberikan solusi praktis dan efisien untuk meningkatkan kenyamanan kerja di ruang industri bersuhu tinggi seperti ruang boiler cangkang kelapa sawit. The boiler room is an industrial area with high heat loads that can potentially cause heat stress and reduce work productivity. The study aims to improve thermal comfort in the boiler room through ventilation engineering and evaluation based on airflow distribution modeling. The methods used include measuring physical parameters (temperature, humidity, wind speed), calculating PMV, PPD, and THI, and conducting Computational Fluid Dynamics (CFD) simulations using ANSYS Fluent software. Improvements were made by adding a 30 m² grille ventilation and three 2,16 m² louvers, resulting in a total opening area of 32,16 m². Measurement results showed PMV values up to +3,9, PPD 90–100%, and THI 30,8–33,1°C before intervention. After implementing the addition of ventilation grilles and louvers, simulations showed an increase in airflow velocity >3 m/s and a temperature decrease >9°C in the hot zone. Louvers were proven effective in reducing temperature and humidity without electricity consumption, as well as lowering the thermal index. This strategy provides a practical and efficient solution to improve workplace comfort in high-temperature industrial spaces such as shell boiler rooms.
