| dc.contributor.advisor | Rahmawan, Hendra | |
| dc.contributor.author | Permana, Silva Dimas Surya | |
| dc.date.accessioned | 2025-08-13T06:25:13Z | |
| dc.date.available | 2025-08-13T06:25:13Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/168952 | |
| dc.description.abstract | Kebisingan di lingkungan kerja merupakan faktor risiko yang kerap diabaikan, padahal
dapat mengganggu kenyamanan, konsentrasi, hingga kesehatan pekerja. PT Waindo
Specterra belum memiliki sistem monitoring kebisingan otomatis, meskipun terdapat area
aktivitas padat yang berpotensi melampaui ambang batas 85 dB sesuai Permenaker No.5
Tahun 2018. Penelitian ini bertujuan untuk mengembangkan Sistem Monitoring
Kebisingan berbasis Internet of Things (IoT) dengan menggunakan sensor suara MAX4466
dan mikrokontroler ESP32. Sistem dirancang agar mampu menampilkan data secara realtime, mengirimkan notifikasi melalui aplikasi Blynk, mencatat data otomatis ke Google
Spreadsheet, dan menyimpan data cadangan melalui MicroSD. Metode pelaksanaan
meliputi observasi lingkungan kerja, analisis kebutuhan, perancangan sistem, implementasi,
pengujian, dan analisis data. Evaluasi dilakukan dengan membandingkan hasil pengukuran
sistem terhadap alat ukur kebisingan konvensional. Hasil menunjukkan bahwa sistem dapat
mendeteksi kebisingan secara real-time dan mencatat data dengan format yang terstruktur.
Rentang error absolut berada pada 1,80–1,84 dB, sedangkan error relatif berkisar 2,92%–
3,05%. Penerapan model koreksi regresi linear berhasil meningkatkan akurasi secara
signifikan, dengan menurunkan rentang error absolut menjadi 0,49–0,79 dB dan error
relatif menjadi 0,83%–1,40%. Sistem ini dapat dimanfaatkan sebagai alat bantu awal bagi
divisi HSE (Healthy, Safety, Environment) dalam kegiatan pemantauan kebisingan kerja. | |
| dc.description.abstract | Noise in the workplace is a risk factor often overlooked, despite its potential to
disrupt comfort, concentration, and employee health. PT Waindo Specterra currently lacks
an automatic noise detection system, even though several high-activity areas may exceed
the 85 dB threshold as regulated by the Indonesian Ministry of Manpower (Regulation No.
5 of 2018). This study aims to develop a noise monitoring system based on the Internet of
Things (IoT) using a MAX4466 sound sensor and ESP32 microcontroller. The system is
designed to display real-time data, send alerts via the Blynk application, automatically log
data to Google Spreadsheet, and store backup data on a MicroSD card. The methodology
includes workplace observation, needs analysis, system design, implementation, testing,
and data analysis. System evaluation was conducted by comparing measurement results
with a conventional Sound Level Meter. The system successfully detects noise in real-time
and records data in a structured format. The absolute error ranged from 1.80 to 1.84 dB,
while the relatif error was between 2.92% and 3.05%. This system can serve as an initial
tool for the Health, Safety, and Environment (HSE) division in monitoring workplace noise. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | SISTEM MONITORING KEBISINGAN BERBASIS IOT DENGAN PENYIMPANAN TERINTEGRASI | id |
| dc.title.alternative | IoT-Based Noise Monitoring System with Integrated Data Storage | |
| dc.type | Tugas Akhir | |
| dc.subject.keyword | ESP32 | id |
| dc.subject.keyword | HSE | id |
| dc.subject.keyword | IoT | id |
| dc.subject.keyword | noise | id |
| dc.subject.keyword | MAX4466 | id |