View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Sentimen Pengguna X Terhadap Peluncuran Bursa Berjangka Kripto di Indonesia Menggunakan Algoritme SVM

      Thumbnail
      View/Open
      Cover (362.3Kb)
      Fulltext (1.611Mb)
      Lampiran (1.796Mb)
      Date
      2025
      Author
      Afri, Muhammad Rifqi Hizrian
      Wijaya, Sony Hartono
      Metadata
      Show full item record
      Abstract
      Pada tahun 2023, pemerintah Indonesia secara resmi meluncurkan Bursa Berjangka Aset Kripto sebagai langkah untuk menciptakan ekosistem perdagangan kripto yang lebih aman dan teregulasi. Keputusan ini memicu berbagai opini dari masyarakat yang tersebar luas di media sosial, khususnya X. Penelitian ini bertujuan untuk mengetahui sentimen masyarakat Indonesia terhadap peluncuran Bursa Berjangka Kripto melalui analisis tweet berbahasa Indonesia, yang diklasifikasikan ke dalam tiga kategori sentimen: positif, netral, dan negatif menggunakan algoritme Support Vector Machine (SVM). Model SVM dengan parameter terbaik berhasil mencapai akurasi sebesar 94,26%. Hasil analisis menunjukkan bahwa sebagian besar tweet bersentimen netral sebanyak 90,7%, diikuti oleh 6,9% tweet positif, dan 1,4% negatif.
       
      In 2023, the Indonesian government officially launched the Crypto Futures Exchange as an initiative to establish a safer and more regulated crypto trading ecosystem. This decision sparked various public opinions widely shared on social media, particularly X. This study aims to analyze the sentiment of Indonesian users toward the launch of the Crypto Futures Exchange through tweets written in Bahasa Indonesia, categorized into three sentiment classes: positive, neutral, and negative using the Support Vector Machine (SVM) algorithm. The best-performing SVM model achieved an accuracy of 94.26%. Analysis results showed that the majority of tweets were neutral (90,7%), followed by 6.9% positive and 1.4% negative tweets.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168873
      Collections
      • UT - Computer Science [88]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository