View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Soil Science and Land Resources
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agriculture
      • UT - Soil Science and Land Resources
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemantauan Kondisi Tanaman Kedelai Menggunakan CCM dan Citra UAV dengan Pendekatan Indeks Vegetasi EXG, GCC, dan VARI

      Thumbnail
      View/Open
      Cover (1.208Mb)
      Fulltext (2.499Mb)
      Lampiran (487.8Kb)
      Date
      2025
      Author
      NURMAIDAH, NENG SITI SINDIA
      Trisasongko, Bambang Hendro
      Chahyahusna, Affan
      Metadata
      Show full item record
      Abstract
      Kedelai (Glycine max L.) merupakan salah satu komoditas pangan utama yang memiliki peran penting dalam pemenuhan kebutuhan protein nabati dan membutuhkan pemantauan kondisi pertumbuhan secara akurat. Namun demikian, budidayanya pada sistem lahan ganda seperti agriphotovoltaic (APV) belum banyak dilakukan. Salah satu pendekatan pemantauan yang dapat diterapkan adalah pemanfaatan teknologi penginderaan jauh berbasis UAV (Unmanned Aerial Vehicle) dan yang ditunjang dengan sensor proksimal seperti CCM (Chlorophyll Content Meter), yang memungkinkan pengamatan tanaman dilakukan secara cepat, non-destruktif, dan efisien. Penelitian ini bertujuan untuk menganalisis pertumbuhan tanaman kedelai menggunakan kombinasi citra UAV DJI Mini 2 SE dan alat CCM-200 Plus pada dua kondisi lahan, yaitu di bawah struktur APV dan lahan terbuka. Nilai Chlorophyll Content Index (CCI) diukur langsung di lapangan, sedangkan indeks vegetasi RGB (Excess Green (ExG), Green Chromatic Coordinate (GCC), dan Visible Atmospherically Resistant Index (VARI)) diekstraksi dari citra udara pada lima tingkat umur tanaman (2, 4, 6, 8, dan 10 MST). Hasil penelitian menunjukkan bahwa nilai CCI meningkat seiring bertambahnya umur tanaman, dengan nilai tertinggi pada umur 10 MST, dan umumnya lebih tinggi di bawah APV dibandingkan lahan terbuka. Indeks vegetasi RGB mampu menunjukkan pola kehijauan tanaman, namun hubungannya terhadap nilai CCI tergolong lemah. Nilai koefisien determinasi (R²) tertinggi hanya 0,193 pada lahan APV, dan R² = 0,234 pada lahan terbuka. Nilai RMSE berkisar antara 1,76 hingga 7,63, menunjukkan bahwa penelitian lanjutan masih diperlukan. Kombinasi UAV dan CCM dapat digunakan untuk mendukung pemantauan pertumbuhan tanaman, khususnya dalam konteks pertanian presisi. Namun demikian, untuk estimasi kandungan klorofil yang lebih akurat, disarankan penggunaan sensor dengan kemampuan penginderaan yang lebih baik, seperti sensor multispektral, serta analisis pada tahap vegetatif yang tepat.
       
      Soybean (Glycine max L.) is a major food commodity with an important role in meeting plant-based protein needs which requires accurate growth monitoring. Nonetheless, its cultivation under dual-use land systems such as agriphotovoltaic (APV) has been limited. One promising approach is the use of remote sensing technology through UAVs (Unmanned Aerial Vehicles) combined with proximal sensors like the Chlorophyll Content Meter (CCM), enabling rapid, non-destructive and efficient crop observation. This study aimed to assess soybean growth using a combination of UAV DJI Mini 2 SE imagery and CCM-200 Plus in two field conditions: under APV structures and in open fields. Chlorophyll Content Index (CCI) was measured directly in the field, while RGB-based vegetation indices (ExG, GCC, and VARI) were extracted from aerial imagery at five levels of plant age (2, 4, 6, 8, and 10 weeks after planting). The results showed that CCI values increased with plant age, with the highest values observed at 10 weeks after planting, and generally higher under APV compared to open fields. Indices from RGB data reflected changes in canopy greenness but showed weak correlation levels with CCI. The coefficient of determination (R²) values are 0.193 for the agriphotovoltaic (APV) land and 0.234 for the open land. RMSE values ranged from 1.76 to 7.63, indicating limited predictive accuracy. Combination of UAV and CCM proved useful for supporting crop monitoring, particularly in the context of precision agriculture. However, for a more accurate chlorophyll estimation, the use of sensors with improved sensing capabilities, such as multispectral sensors, and analysis on precise vegetative stages is recommended.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168870
      Collections
      • UT - Soil Science and Land Resources [2822]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository