| dc.contributor.advisor | Supriyo, Prapto Tri | |
| dc.contributor.advisor | Hanum, Farida | |
| dc.contributor.author | Wibowo, Aditya Dwi Prasetyo | |
| dc.date.accessioned | 2025-08-12T09:15:07Z | |
| dc.date.available | 2025-08-12T09:15:07Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/168852 | |
| dc.description.abstract | Pengangkutan barang merupakan permasalahan yang dialami produsen
suatu barang dalam memasarkan produk mereka. Permasalahan tersebut menjadi
salah satu faktor penting dalam pencapaian efisiensi dan efektivitas suatu produsen.
Permasalahan yang sering dihadapi adalah Vehicle Routing Problem, yaitu
penentuan rute optimal untuk armada kendaraan dalam mengantarkan barang ke
beberapa lokasi dengan mempertimbangkan berbagai kendala seperti kapasitas
kendaraan, jarak tempuh, dan waktu pengiriman. Dalam karya ilmiah ini, dibuat
model untuk permasalahan pengangkutan barang dengan beberapa tujuan, yaitu
menghasilkan rute yang meminimumkan total jarak tempuh dengan tetap
mempertimbangkan kapasitas kendaraan. Penelitian ini menggunakan algoritma
Bee Colony Optimization dengan bantuan software Python 3.11.9 yang
menghasilkan solusi yang lebih efisien dan efektif dibandingkan dengan metode
manual. Hasil implementasi pada masalah pengiriman barang menunjukkan bahwa
algoritma ini mampu menghasilkan rute dengan total jarak tempuh dan waktu
pengiriman yang lebih singkat. | |
| dc.description.abstract | The transportation of goods is a common issue faced by manufacturers in
distributing their products. This challenge plays a crucial role in achieving
efficiency and effectiveness in their operations. One of the most frequently
encountered problems is the Vehicle Routing Problem (VRP), which involves
determining the optimal routes for a fleet of vehicles to deliver goods to multiple
destinations while considering various constraints such as vehicle capacity, travel
distance, and delivery time. In this scientific work, a model is developed to address
the goods transportation problem with multiple objectives, primarily to generate
routes that minimize total travel distance while accounting for vehicle capacity. The
study employs the Bee Colony Optimization algorithm implemented using Python
version 3.11.9, which provides more efficient and effective solutions compared to
manual methods. The results of the implementation on a delivery problem show
that the algorithm is capable of generating routes with shorter total distances and
delivery times. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | PENYELESAIAN VEHICLE ROUTING PROBLEM MENGGUNAKAN PEMROGRAMAN PYTHON BERBASIS BEE COLONY OPTIMIZATION | id |
| dc.title.alternative | Vehicle Routing Problem Solution Using Python Programming Based on Bee Colony Optimization | |
| dc.type | Skripsi | |
| dc.subject.keyword | Capacitated Vehicle Routing Problem | id |