View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritma Random Forest Regression untuk Deteksi Kandungan Mangan Tanaman Kelapa Sawit Berbasis Citra Sentinel-2A

      Thumbnail
      View/Open
      Cover (460.0Kb)
      Fulltext (1.818Mb)
      Lampiran (1.358Mb)
      Date
      2025
      Author
      Zahra, Khairunnisa Az
      Seminar, Kudang Boro
      Sudradjat
      Metadata
      Show full item record
      Abstract
      Kelapa sawit merupakan komoditas utama di Indonesia dengan luas areal perkebunan yang terus berkembang. Namun, produktivitasnya masih tergolong rendah. Salah satu faktor penting yang memengaruhi hasil panen kelapa sawit adalah ketersediaan unsur hara, termasuk mangan (Mn) sehingga pemantauannya sangat krusial untuk meningkatkan produktivitas kelapa sawit. Namun, metode konvensional berbasis sampel dan penggunaan laboratorium untuk mengukur kandungan mangan umumnya memerlukan waktu yang lama, biaya tinggi, dan cakupan spasial yang terbatas. Penelitian ini bertujuan untuk memprediksi kandungan mangan (Mn) pada perkebunan kelapa sawit di lahan gambut, mineral dan data gabungan dari lahan gambut dan mineral menggunakan citra Sentinel-2A dan algoritma Random Forest Regression. Penelitian ini mengintegrasikan data citra Sentinel-2A dan indeks vegetasi sebagai variabel bebas, serta data sampel daun kelapa sawit sebagai variabel terikat. Data citra yang diperoleh melalui tahap pra-proses, yang meliputi resampling resolusi citra, cropping sesuai dengan peta batas kebun, dan ekstraksi citra menggunakan point sampling tool. Data kemudian dibagi menjadi 90% untuk pelatihan dan 10% untuk pengujian model. Hasil penelitian menunjukkan bahwa model spesifik untuk lahan mineral menghasilkan correctness yang baik sebesar 86,87%, sedangkan model spesifik pada lahan gambut menghasilkan correctness sebesar 76,48% yang masih dapat dikategorikan layak. Model gabungan yang diuji pada keseluruhan data memberikan correctness sebesar 77,28%, serta masing-masing 85,27% dan 73,74% ketika diuji pada data mineral dan gambut secara terpisah.
       
      Oil palm is a major agricultural commodity in Indonesia, with plantation areas continuing to expand. However, its productivity remains relatively low. One of the key factors affecting oil palm yield is the availability of nutrients, including manganese (Mn), making its monitoring crucial for improving productivity. Conventional sample-based and laboratory-based methods for measuring manganese content are generally time-consuming, costly, and spatially limited. This study aims to predict manganese (Mn) content in oil palm plantations located on peat soil, mineral soil, and a combination of both using Sentinel-2A imagery and the Random Forest Regression algorithm. The study integrates Sentinel-2A imagery and vegetation indices as independent variables, and manganese content from oil palm leaf samples as the dependent variable. The imagery data underwent preprocessing steps, including resolution resampling, cropping according to plantation boundary maps, and pixel value extraction using point sampling tools. The dataset was then divided into 90% for training and 10% for testing the model. The results show that the site-specific model for mineral soil produced a high correctness of 86,87%, while the model for peat soil achieved a correctness of 76,48%, which is still considered acceptable. The combined model tested on all data yielded a correctness of 77,28%, with 85,27% and 73,74% when tested separately on mineral and peat soil data, respectively.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168824
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository