View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Peningkatan Efisiensi Penghitungan Benih Ikan Hias Melalui Otomatisasi Berbasis Kecerdasan Buatan

      Thumbnail
      View/Open
      Cover (2.150Mb)
      Fulltext (9.763Mb)
      Lampiran (2.242Mb)
      Date
      2025
      Author
      Alauddin, Muhammad Fakhri
      Syafutra, Heriyanto
      Metadata
      Show full item record
      Abstract
      Penghitungan benih ikan hias di Balai Benih Ikan Kota Sukabumi hingga kini masih banyak dilakukan secara manual dan kurang efisien karena memakan waktu lama, rentan kesalahan, serta bergantung pada ketelitian petugas. Untuk mengatasi hal ini, penelitian ini mengembangkan sistem otomatis berbasis kecerdasan buatan menggunakan algoritma deteksi objek YOLOv5, dilatih dengan dataset gambar benih ikan melalui platform Roboflow. Sistem ini dijalankan pada mini PC Orange Pi yang terhubung dengan kamera serta antarmuka GUI untuk menampilkan hasil penghitungan secara real-time. Hasil pengujian menunjukkan performa baik dengan mAP@0.5 sebesar 96,9%, precision 96,9%, dan recall 92,5%. Sistem ini juga mampu meningkatkan efisiensi waktu penghitungan lebih dari 90% dibanding metode manual, dengan tingkat kesalahan deteksi yang rendah meskipun jumlah benih banyak. Dengan kinerja tersebut, sistem dinilai efektif sebagai alternatif metode manual, mendukung efisiensi proses pembenihan, dan telah mengadopsi pendekatan Internet of Things (IoT) melalui integrasi perangkat keras dan perangkat lunak, selaras dengan transformasi digital di sektor perikanan.
       
      The counting of ornamental fish seeds at the Sukabumi City Fish Seed Center is still largely done manually and is inefficient because it is time-consuming, prone to errors, and dependent on the accuracy of the staff. To address this issue, this study developed an automated system based on artificial intelligence using the YOLOv5 object detection algorithm, trained with a dataset of fish seed images through the Roboflow platform. The system runs on an Orange Pi mini PC connected to a camera and a GUI interface to display real-time counting results. Testing results show good performance with a mAP@0.5 of 96.9%, precision of 96.9%, and recall of 92.5%. The system also improves counting efficiency by over 90% compared to manual methods, with low detection error rates even when dealing with large numbers of fish larvae. With such performance, the system is deemed effective as an alternative to manual methods, supporting the efficiency of the fish breeding process, and has adopted an Internet of Things (IoT) approach through the integration of hardware and software, aligning with digital transformation in the fisheries sector.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168782
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository