Show simple item record

dc.contributor.advisorBudiarti, Retno
dc.contributor.advisorArdana, Ngakan Komang Kutha
dc.contributor.author'aisy, Bunga Najwa Rihhadatul
dc.date.accessioned2025-08-11T23:58:03Z
dc.date.available2025-08-11T23:58:03Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/168738
dc.description.abstractFluktuasi harga saham yang tinggi, terutama pada sektor pertambangan seperti PT Bayan Resources Tbk (BYAN), diduga dipengaruhi oleh berbagai faktor makroekonomi seperti IHSG, nilai tukar USD, inflasi, BI Rate, dan harga acuan batubara. Dalam kondisi pasar yang volatil, pencilan (outliers) sering muncul dan dapat menyebabkan bias pada pendugaan model regresi yang menggunakan pendekatan Ordinary Least Squares (OLS). Karya ilmiah ini bertujuan untuk menganalisis pengaruh faktor-faktor makroekonomi terhadap harga saham BYAN serta membandingkan keakuratan model OLS dan Least Median Squares (LMS) dalam menangani pencilan. Dalam karya ilmiah ini, digunakan metode Cochrane Orcutt untuk mengatasi pelanggaran asumsi tidak adanya autokorelasi pada residual model. Analisis dilakukan menggunakan data pasar keuangan dan indikator ekonomi yang relevan. Hasil penelitian menunjukkan bahwa keberadaan pencilan menyebabkan akurasi model OLS menjadi rendah. Sementara itu, metode LMS terbukti lebih tahan terhadap pencilan dan menghasilkan akurasi model lebih tinggi daripada akurasi model OLS.
dc.description.abstractThe high volatility of stock prices, especially in the mining sector such as PT Bayan Resources Tbk (BYAN), is suspected to be influenced by various macroeconomic factors including the Jakarta Composite Index (IHSG), USD exchange rate, inflation, BI Rate, and coal reference prices. In a volatile market, outliers often appear and may cause bias in regression estimates using the Ordinary Least Squares (OLS) approach. This study aims to analyze the effect of macroeconomic factors on BYAN's stock price and compare the accuracy of the OLS and Least Median Squares (LMS) models in handling outliers. The Cochrane Orcutt method is also employed to address violations of the no-autocorrelation assumption in the OLS model residuals. The analysis uses financial market data and relevant economic indicators. The results show that the presence of outliers reduces the accuracy of the OLS model. In contrast, the LMS method proves to be more robust to outliers and yields higher model accuracy compared to OLS.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleAnalisis HUbungan Faktor Makroekonomi terhadap Harga Saham Bayan Resources dengan Least Median Squaresid
dc.title.alternativeAnalysis of the Relationship Between Macroeconomic Factors and the Stock Price of Bayan Resources Using Least Median Squares
dc.typeSkripsi
dc.subject.keywordMacroeconomicid
dc.subject.keywordpencilanid
dc.subject.keywordharga sahamid
dc.subject.keywordMakroekonomiid
dc.subject.keywordStock priceid
dc.subject.keywordCochrane-Orcuttid
dc.subject.keywordleast median squaresid
dc.subject.keywordouliersid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record