View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Estimasi Kandungan Lignin pada Dedak Padi Bercampur Sekam Menggunakan PNN dengan Model Warna YCbCr

      Thumbnail
      View/Open
      Cover (2.052Mb)
      Fulltext (2.814Mb)
      Lampiran (1.993Mb)
      Date
      2025
      Author
      Bakhri, Zuhdi Mukarram
      Kustiyo, Aziz
      Metadata
      Show full item record
      Abstract
      Adulteration of rice bran is commonly done by mixing it with materials of similar appearance but lower nutritional value, such as ground rice husk. A key indicator of such adulteration is increased lignin content. Adding phloroglucinol solution to the mixture produces a red color that varies with lignin levels. This study aims to estimate lignin content in rice bran-husk mixtures using artificial intelligence and digital image processing. YCbCr color model images of eleven rice bran-husk compositions, treated with phloroglucinol, were analyzed. The lignin content of each variation was measured in the lab and used to define eleven classes. A Probabilistic Neural Network (PNN) was employed as the classifier, with image histograms of varying bin sizes as input. PNN performance was evaluated using 4-fold cross-validation. Results showed the highest average accuracy of 85.80% with 32 bins and histograms from all three YCbCr channels.
       
      Pemalsuan dedak padi umumnya dilakukan dengan mencampurkan bahan lain yang memiliki karakteristik fisik serupa namun bernilai nutrisi lebih rendah, seperti sekam padi giling. Salah satu indikator utamanya adalah peningkatan kadar lignin. Penambahan larutan phloroglucinol pada campuran dedak dan sekam menghasilkan warna merah, yang bervariasi sesuai kandungan lignin. Penelitian ini bertujuan mengestimasi kadar lignin dalam dedak bercampur sekam menggunakan pendekatan kecerdasan buatan dan pengolahan citra digital. Citra yang digunakan adalah citra model warna YCbCr dari dedak dan sekam dengan sebelas variasi komposisi yang telah ditambahkan larutan phloroglucinol. Kadar lignin dari sebelas variasi tersebut diukur di laboratorium dan digunakan sebagai dasar untuk menentukan sebelas kelas. Algoritma Probabilistic Neural Network (PNN) digunakan sebagai pengklasifikasi, dengan histogram citra dengan variasi jumlah bin sebagai input. Kinerja PNN dievaluasi menggunakan 4-fold cross-validation. Hasil menunjukkan akurasi rata-rata tertinggi sebesar 85,80% dengan 32 bin dan input histogram dari ketiga kanal YCbCr.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168681
      Collections
      • UT - Computer Science [88]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository