Show simple item record

dc.contributor.advisorJulianto, Mochamad Tito
dc.contributor.advisorNajib, Mohamad Khoirun
dc.contributor.authorNugraha, Wanda
dc.date.accessioned2025-08-11T07:05:59Z
dc.date.available2025-08-11T07:05:59Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/168630
dc.description.abstractPembangunan Ibu Kota Nusantara (IKN) merupakan salah satu terobosan kebijakan pemerintah yang memicu beragam respons publik sehingga menjadi penting untuk memahami bagaimana pandangan publik terhadap kebijakan ini. Tujuan penelitian ini mencakup mengeksplorasi kecenderungan sentimen, membangun model analisis sentimen menggunakan metode Bidirectional Long Short-Term Memory (BiLSTM) yang dioptimalkan melalui hyperparameter tuning, dan melakukan evaluasi terhadap kinerja model sebelum dan sesudah tuning. Temuan dari proses eksplorasi distribusi sentimen menunjukkan dominasi sentimen negatif sebesar 52%, diikuti netral sebesar 34%, dan positif 14%. Model awal yang telah dibangun menghasilkan akurasi uji sebesar 80% dan rata-rata akurasi sebesar 82% pada 10-fold cross validation. Meskipun akurasi uji tetap 80%, model hasil tuning mengalami peningkatan recall pada kelas negatif dan positif, yang penting dalam konteks analisis sentimen kebijakan publik. Rata-rata akurasi setelah tuning meningkat menjadi 84% pada 10-fold cross validation menunjukkan model memiliki kemampuan generalisasi yang lebih baik.
dc.description.abstractThe development of the new capital city, Ibu Kota Nusantara (IKN) is a groundbreaking government policy that has triggered diverse public responses, making it crucial to understand how the public views this policy. The objectives of this study include exploring sentiment trends, building a sentiment analysis model using the Bidirectional Long Short-Term Memory (BiLSTM) method optimized through hyperparameter tuning, and evaluating the model's performance before and after tuning. Findings from the sentiment distribution exploration process indicate a dominance of negative sentiment at 52%, followed by neutral at 34%, and positive at 14%. The initial model that has been built produced a test accuracy of 80% and an average accuracy of 82% in 10-fold cross-validation. Although the test accuracy remained at 80%, the tuned model experienced increased recall in both the negative and positive classes, which is important in the context of public policy sentiment analysis. The average accuracy after tuning increased to 84% in 10-fold cross-validation, indicating the model has better generalization capabilities.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleAnalisis Sentimen Kebijakan Pembangunan Ibu Kota Nusantara di Media Sosial X Menggunakan Bidirectional Long Short-Term Memoryid
dc.title.alternativeAnalysis of the Nusantara Capital City Development Policy on Social Media X using Bidirectional Long Short Term Memory
dc.typeSkripsi
dc.subject.keywordanalisis sentimenid
dc.subject.keywordmedia sosial Xid
dc.subject.keywordBiLSTMid
dc.subject.keywordIbu Kota Nusantaraid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record