View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Sentimen Kebijakan Pembangunan Ibu Kota Nusantara di Media Sosial X Menggunakan Bidirectional Long Short-Term Memory

      Thumbnail
      View/Open
      Cover (6.223Mb)
      Fulltext (9.958Mb)
      Lampiran (7.100Mb)
      Date
      2025
      Author
      Nugraha, Wanda
      Julianto, Mochamad Tito
      Najib, Mohamad Khoirun
      Metadata
      Show full item record
      Abstract
      Pembangunan Ibu Kota Nusantara (IKN) merupakan salah satu terobosan kebijakan pemerintah yang memicu beragam respons publik sehingga menjadi penting untuk memahami bagaimana pandangan publik terhadap kebijakan ini. Tujuan penelitian ini mencakup mengeksplorasi kecenderungan sentimen, membangun model analisis sentimen menggunakan metode Bidirectional Long Short-Term Memory (BiLSTM) yang dioptimalkan melalui hyperparameter tuning, dan melakukan evaluasi terhadap kinerja model sebelum dan sesudah tuning. Temuan dari proses eksplorasi distribusi sentimen menunjukkan dominasi sentimen negatif sebesar 52%, diikuti netral sebesar 34%, dan positif 14%. Model awal yang telah dibangun menghasilkan akurasi uji sebesar 80% dan rata-rata akurasi sebesar 82% pada 10-fold cross validation. Meskipun akurasi uji tetap 80%, model hasil tuning mengalami peningkatan recall pada kelas negatif dan positif, yang penting dalam konteks analisis sentimen kebijakan publik. Rata-rata akurasi setelah tuning meningkat menjadi 84% pada 10-fold cross validation menunjukkan model memiliki kemampuan generalisasi yang lebih baik.
       
      The development of the new capital city, Ibu Kota Nusantara (IKN) is a groundbreaking government policy that has triggered diverse public responses, making it crucial to understand how the public views this policy. The objectives of this study include exploring sentiment trends, building a sentiment analysis model using the Bidirectional Long Short-Term Memory (BiLSTM) method optimized through hyperparameter tuning, and evaluating the model's performance before and after tuning. Findings from the sentiment distribution exploration process indicate a dominance of negative sentiment at 52%, followed by neutral at 34%, and positive at 14%. The initial model that has been built produced a test accuracy of 80% and an average accuracy of 82% in 10-fold cross-validation. Although the test accuracy remained at 80%, the tuned model experienced increased recall in both the negative and positive classes, which is important in the context of public policy sentiment analysis. The average accuracy after tuning increased to 84% in 10-fold cross-validation, indicating the model has better generalization capabilities.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168630
      Collections
      • UT - Mathematics [89]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository