View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Kecepatan Getaran Mesin Menggunakan Algoritma Light Gradient Boosting Machine di PT Amerta Indah Otsuka

      Thumbnail
      View/Open
      Cover (2.194Mb)
      Fulltext (2.966Mb)
      Date
      2025
      Author
      Fawwaz, Kemas muhammad Adnan fakhri Sjaf
      Renanti, Medhanita Dewi
      Metadata
      Show full item record
      Abstract
      PT Amerta Indah Otsuka masih melakukan maintenance secara preventif, yang beresiko menyebabkan downtime yang tidak terduga dan kerugian yang besar. Penelitian ini bertujuan untuk mengimplementasikan algoritma LightGBM untuk prediksi kecepatan getaran mesin sebagai fitur predictive maintenance menggunakan model pembelajaran mesin. Metode CRISP-DM diterapkan karena memungkinkan pengembangan juga fokus terhadap datasetnya. Hasil penelitian ini mencakup pemahaman data, pembersihan data, rekayasa fitur, pelatihan model, evaluasi dan perbandingan model. Algoritma light gradient boosting machine digunakan sebagai model pembelajaran mesin. Evaluasi model dilakukan menggunakan mean actual error (MAE). Pembuatan model dilakukan menggunakan library LigthtGBM dan dashboard dibuat menggunakan FastAPI, Typescript, dan React. Model sudah menghasilkan akurasi yang cukup baik dan sesuai berdasarkan hasil metrik yang didapatkan. Diharapkan dengan fitur ini downtime dapat dihindari, kerugian perusahaan juga dapat diminimalisir.
       
      PT Amerta Indah Otsuka still performs preventive maintenance, which risks unexpected downtime and significant losses. This study aims to implement the LightGBM algorithm for machine vibration velocity prediction as a predictive maintenance feature using a machine learning model. The CRISP-DM method was applied because it allows for focused development of the dataset. The research results include data understanding, data cleaning, feature engineering, model training, evaluation, and model comparison. The Light Gradient Boosting Machine algorithm was used as the machine learning model. Model evaluation was performed using the mean actual error (MAE). The model was built using the LightGBM library, and the dashboard was created using FastAPI, TypeScript, and React. The model has produced fairly good accuracy and is consistent based on the obtained metrics. It is hoped that this feature can prevent downtime and minimize company losses.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168611
      Collections
      • UT - Software Engineering Technology [182]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository