View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Graf Pembagi Nol Matriks Segitiga Atas Berordo 2 dengan Enttri Anggota Z_n

      Thumbnail
      View/Open
      Cover (1.155Mb)
      Fulltext (5.163Mb)
      Date
      2025
      Author
      Hidayat, Hafilah Rizka Nuha
      Mas'oed, Teduh Wulandari
      Guritman, Sugi
      Metadata
      Show full item record
      Abstract
      Misalkan M_2 (n) merupakan himpunan semua matriks segitiga atas berordo 2 dengan entri anggota Z_n. Pembagi nol dari M_2 (n), dinotasikan Z(M_2 (n)), merupakan elemen tak nol dari M_2 (n) yang menghasilkan nol jika dikalikan dengan elemen tak nol lain dari M_2 (n). Pembagi nol Z(M_2 (n)) dapat direpresentasikan ke dalam sebuah graf berarah G(M_2 (n)) atau graf tak berarah G ~(M_2 (n)). Di dalam karya tulis ini, ditunjukan bahwa graf berarah G(M_2 (n)) merupakan graf terhubung, jika n=2. Selain itu, untuk graf tak berarah G ~(M_2 (n)) dengan =?p_1?^(e_1 ) ?p_2?^(e_2 )..?p_m?^(e_m ), m=2 dan p_i merupakan bilangan prima berbeda, ditunjukan bahwa tidak ada simpul yang adjacent dengan semua simpul lain. Sedangkan untuk graf tak berarah G ~(M_2 (n)) dengan n=p^k, dengan p bilangan prima, terdapat simpul yang mendominasi.
       
      Let M_2 (n) denote the set of all upper triangular 2×2 matrices over Z_n. The zero-divisor of M_2 (n) denoted by Z(M_2 (n)), are non-zero elements that annihilate some other non-zero element under matrix multiplication. These zero-divisors can be represented as a directed graph (M_2 (n)) or an undirected graph G ~(M_2 (n)). This paper demonstrates that for n=2, the directed graph graph G(M_2 (n)) is connected. Furthermore, for the undirected graph G ~(M_2 (n)), we show that when n=?p_1?^(e_1 ) ?p_2?^(e_2 )..?p_m?^(e_m ) for m=2 and p_i are distinct prime number, no vertex is adjacent to all other vertexes. Conversely, when n=p^k for p prime, there exists a dominating vertex that adjacent to every other vertex in G ~(M_2 (n)).
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168558
      Collections
      • UT - Mathematics [89]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository