View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemetaan Distribusi dan Kerapatan Mangrove Menggunakan Citra Sentinel-2A di Desa Pantai Harapanjaya, Kecamatan Muara Gembong

      Thumbnail
      View/Open
      Cover (568.3Kb)
      Fulltext (2.073Mb)
      Lampiran (1017.Kb)
      Date
      2025
      Author
      Nugraha, Aryasatya
      Panjaitan, James Parlindungan
      Arhatin, Risti Endriani
      Metadata
      Show full item record
      Abstract
      Kecamatan Muara Gembong memiliki potensi besar pada ekosistem mangrove, namun kondisi luasan mangrove terus mengalami perubahan karena konversi lahan dan abrasi. Penelitian ini bertujuan untuk meninjau mangrove melalui teknologi penginderaan jauh khususnya dengan citra Sentinel-2A. Metode yang digunakan yakni penerapan dua algoritma klasifikasi berbasis piksel yaitu maximum likelihood (MLH) dan support vector machine (SVM), serta penghitungan indeks vegetasi NDVI dan analisis regresi terhadap data tutupan kanopi hasil pengambilan lapang pada pemetaan sebaran dan kerapatan mangrove. Akurasi yang dihasilkan MLH dan SVM secara berturut-turut adalah 84,55% dan 91,82%. Klasifikasi terbaik dihitung lebih lanjut dengan indeks vegetasi NDVI dan menghasilkan luasan mangrove total di Desa Pantai Harapanjaya sebesar 255,12 ha dengan dominan kelas mangrove sedang sebesar 106,55 ha. Korelasi kuat antara tutupan kanopi mangrove dengan nilai NDVI sebesar 76,47%, sementara sisanya dipengaruhi oleh faktor lain.
       
      Muara Gembong District has significant potential in terms of mangrove ecosystems. However, the extent of mangroves in this district continues to change due to land conversion and coastal abrasion. This study aimed to map the distribution and density of mangroves using remote sensing technology, particularly Sentinel-2A imagery. The method involved the application of two pixel-based classification algorithms Maximum Likelihood (MLH) and Support Vector Machine (SVM) as well as the calculation of the NDVI vegetation index and regression analysis of canopy cover data obtained from field surveys to map the distribution and density of mangroves. The accuracy achieved by MLH and SVM was 84.55% and 91.82%, respectively. The best-performing classification was further analyzed using the NDVI vegetation index, resulting in a total mangrove area of 255.12 hectares, with the majority classified as moderate-density mangrove (106.55 hectares). A strong correlation of 76.47% was found between mangrove canopy cover and NDVI values, while the remaining variation was influenced by other factors.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/168406
      Collections
      • UT - Marine Science And Technology [2093]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository