Investigasi Hidrogenasi Asetilena Menjadi Etilena pada Permukaan Katalis SiO2 Terdoping Ni dengan Berbasis Teori Fungsi Kerapatan.
Abstract
Etilena adalah bahan baku penting dalam industri petrokimia, digunakan
dalam produksi dikloroetilena, oksida etilena, dan polietilena. Produksi etilena
dapat dilakukan melalui dua jalur: petrokimia (cracking nafta dan steam cracking
etana) dan non-petrokimia (konversi batu bara). Pada jalur petrokimia, asetilena
terbentuk sebagai pengotor, sedangkan pada jalur non-petrokimia, asetilena
menjadi target konversi. Hidrogenasi katalitik dengan katalis berbasis palladium
adalah metode yang paling efektif, namun biaya tinggi palladium mendorong
pencarian alternatif. Penelitian ini menggunakan teori fungsi kerapatan untuk
mempelajari permukaan katalis SiO2 yang terdoping Ni melalui model doping
tunggal atom Ni dan doping monolayer atom Ni. Modifikasi ini menjadikan
material semikonduktor tipe-p dengan band gap 4,1 eV (model I) dan 1,9 eV (model
II). Model II lebih potensial dalam aktivitas katalitik dengan jarak ikatan Ni–O
1,702 Å, sementara model I lebih stabil secara struktural dengan energi total -
2132,124 Ry. Ethylene is an essential feedstock in the petrochemical industry, widely utilized in
the production of dichloroethylene, ethylene oxide, and polyethylene. Ethylene
production can be achieved via two main pathways: petrochemical (naphtha
cracking and ethane steam cracking) and non-petrochemical (coal conversion). In
the petrochemical route, acetylene is generated as an impurity, whereas in the nonpetrochemical
route, acetylene serves as the target for conversion. Catalytic
hydrogenation using palladium-based catalysts is the most effective method;
however, the high cost of palladium has prompted the search for alternative
catalysts. This study employs density functional theory (DFT) to investigate the
surface of SiO2 catalysts doped with Ni, using both single-atom Ni doping and Ni
monolayer doping models. These modifications result in p-type semiconductor
materials with band gaps of 4.1 eV (Model I) and 1.9 eV (Model II). Model II
exhibits higher catalytic potential, characterized by a Ni–O bond length of 1.702 Å,
while Model I
Collections
- UT - Physics [1227]
