| dc.contributor.advisor | Jaya, I Nengah Surati | |
| dc.contributor.advisor | Ilham, Qori Pebrial | |
| dc.contributor.author | Prasetya, Donny | |
| dc.date.accessioned | 2025-08-07T06:51:13Z | |
| dc.date.available | 2025-08-07T06:51:13Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/166959 | |
| dc.description.abstract | Penelitian ini menerangkan tentang bagaimana mengembangkan metode
pendeteksi perubahan tutupan mangrove berbasis pendekatan pembelajar mesin
(machine learning). Penelitian dilakukan terhadap kejadian deforestasi yang terjadi
di Kabupaten Langkat pada periode mulai tahun 2018 sampai dengan tahun 2024.
Citra perubahan dibuat menggunakan metode image differencing. Model perubahan
tutupan mangrove dibangun menggunakan kombinasi peubah citra hasil image
differencing dan peubah sosio-geo-biofisik. Penelitian ini menunjukkan bahwa
model terbaik dibangun menggunakan kombinasi peubah image differencing dan
sosio-geo-biofisik dengan penghalusan citra pasca klasifikasi menghasilkan overall
accuracy sebesar 95.1%, kappa accuracy sebesar 94.1%, minimum producer’s
accuracy sebesar 90.1%, dan minimum user’s accuracy sebesar 88.6%. Peubah
yang paling berpengaruh dalam pembangunan algoritma decision tree dalam
deteksi deforestasi mangrove adalah ?BSI untuk peubah spektral dan substrat untuk
peubah sosio-geo-biofisik. Penghalusan citra pasca klasifikasi mampu
menghilangkan noise dalam hasil klasifikasi. Deforestasi di Kabupaten Langkat
sebagian besar terjadi akibat alih fungsi mangrove menjadi tambak dan perkebunan. | |
| dc.description.abstract | This research presents the development of a machine learning-based method
for detecting mangrove cover change. The study was conducted on deforestation
events that occurred in Langkat Regency, Indonesia, from 2018 to 2024. A change
map was generated using the image differencing method. The mangrove cover
change model was constructed using a combination of variables derived from the
image differencing results and a set of socio-geo-biophysical parameters. This study
demonstrates that the best model was constructed using a combination of image
differencing and socio-geo-biophysical variables with post-classification image
smoothing, resulting in an overall accuracy of 95.1%, a kappa accuracy of 94.1%,
a minimum producer’s accuracy of 90.1%, and a minimum user’s accuracy of
88.6%. The most influential variables in the development of the decision tree
algorithm were the change in the Bare Soil Index (?BSI) as a spectral variable and
substrate type as a socio-geo-biophysical variable. Post-classification image
smoothing effectively eliminated noise from the classification results. Deforestation
in Langkat Regency was found to be predominantly driven by the conversion of
mangrove areas into aquaculture ponds and plantations. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Pembangunan Algoritma Decision Tree of Machine Learning dalam Deteksi Deforestasi Mangrove di Kabupaten Langkat | id |
| dc.title.alternative | Developing a Machine Learning Decision Tree Algorithm for Mangrove Deforestation Detection in Langkat Regency | |
| dc.type | Skripsi | |
| dc.subject.keyword | Mangrove | id |
| dc.subject.keyword | Perbedaan gambar | id |
| dc.subject.keyword | Pohon keputusan | id |