View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Metode Machine Learning Random Forest dan XGBoost untuk Memprediksi Risiko Kejadian Stroke

      Thumbnail
      View/Open
      Cover (598.8Kb)
      Fulltext (1.534Mb)
      Lampiran (191.2Kb)
      Date
      2025
      Author
      Mahiradewi, Nayla Jasmine
      Ruhiyat
      Anisa, Rahma
      Metadata
      Show full item record
      Abstract
      Stroke merupakan kondisi medis serius yang dapat menyebabkan kecacatan permanen atau bahkan kematian jika tidak ditangani dengan cepat. Penelitian ini menggunakan data sekunder dari dataset stroke yang terdiri dari 5,110 observasi, mencakup informasi mengenai usia, jenis kelamin, riwayat hipertensi, penyakit jantung, kadar glukosa rata-rata, indeks massa tubuh, tipe tempat tinggal, tipe pekerjaan, dan riwayat merokok. Dua metode machine learning, random forest dan XGBoost, dipilih untuk memprediksi risiko stroke. Kedua metode tersebut dianggap cocok untuk data besar dan lebih fleksibel karena tidak memerlukan asumsi parametrik. Penelitian ini bertujuan untuk membandingkan kinerja kedua metode tersebut dalam memprediksi risiko stroke. Evaluasi model dilakukan menggunakan metrik balanced accuracy, sensitivitas, spesifisitas, dan F1-score. Hasil penelitian menunjukkan bahwa XGBoost unggul pada balanced accuracy dibandingkan random forest. Analisis variable importance pada model XGBoost mengidentifikasi usia, rata-rata kadar glukosa, dan indeks massa tubuh sebagai faktor paling berpengaruh terhadap risiko stroke. Penelitian ini diharapkan dapat membantu pengembangan sistem pendukung keputusan untuk deteksi dini stroke serta memberikan wawasan mengenai faktor risiko utama yang perlu diperhatikan.
       
      Stroke is a serious medical condition that can lead to permanent disability or even death if not promptly managed. This study utilizes secondary data from a stroke dataset comprising 5,110 observations, including information on age, gender, history of hypertension, heart disease, average glucose level, body mass index, residence type, work type, and smoking history. Two machine learning methods, random forest and XGBoost, were chosen to predict stroke risk. Both methods are considered suitable for large datasets and are more flexible as they do not require parametric assumptions. This research aims to compare the performance of these two methods in predicting stroke risk. Model evaluation was conducted using balanced accuracy, sensitivity, specificity, and F1-score metrics. The results indicated that XGBoost performs superiorly in terms of balanced accuracy compared to random forest. Variable importance analysis from the XGBoost model identified age, average glucose level, and body mass index as the most influential factors contributing to stroke risk. This study is expected to contribute to the development of decision support systems for early stroke detection and provide insights into key risk factors that need attention.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166948
      Collections
      • UT - Actuaria [54]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository