View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Forest Management
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Estimasi Biomassa Hutan menggunakan Citra PlanetScope dengan Pendekatan Machine Learning di Kecamatan Kahayan Hilir dan Jabiren Raya Kalimantan Tengah

      Thumbnail
      View/Open
      Cover (582.0Kb)
      Fulltext (2.324Mb)
      Lampiran (282.0Kb)
      Date
      2025
      Author
      Maharani, Aulia Cinta
      Jaya, I Nengah Surati
      Metadata
      Show full item record
      Abstract
      Tulisan ini menerangkan tentang pembangunan algoritma pohon keputusan dari pembelajar mesin untuk menduga biomassa di atas permukaan tanah pada hutan lahan kering menggunakan citra PlanetScope di Kecamatan Kahayan Hilir dan Jabiren Raya, Kabupaten Pulang Pisau, Provinsi Kalimantan Tengah. Model pohon keputusan dibangun berdasarkan kombinasi peubah spektral dan sosio-geo-biofisik. Tulisan ini menemukan bahwa model pohon keputusan terbaik diperoleh dengan peubah NDVI, NRGI, VDVI, GARI, jalan, dan elevasi menghasilkan akurasi keseluruhan tertinggi sebesar 94.5% dengan akurasi Kappa sebesar 0.9. Model pohon keputusan yang dihasilkan dari penelitian ini juga menunjukkan jika adanya peningkatan pada NDVI selaras dengan peningkatan biomassa.
       
      This paper describes a development of decision tree algorithm of machine learning to estimate above ground biomass in dryland forest using PlanetScope imagery in Kahayan Hilir and Jabiren Raya Districs, Pulang Pisau Regency, Central Kalimantan. The model of decision tree was developed by combined spectral and sosio-geo-biophysics variables. This paper found that the best model of decision tree was obtained by using NDVI, NRGI, VDVI, GARI, proximity of road, and elevation variables, provided the highest overall accuracy of 94.5% and Kappa accuracy of 0.9. The model of decision tree from this study also proven that an increase of NDVI indicates an increase in biomass.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166935
      Collections
      • UT - Forest Management [3207]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository