View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Fitur Prediksi Penjualan Roti Kalkun Menggunakan Long Short Term Memory di Jimmy Hantu Foundation

      Thumbnail
      View/Open
      Cover (2.276Mb)
      Fulltext (3.913Mb)
      Lampiran (2.975Mb)
      Date
      2025
      Author
      Saputra, Ananda Prathama
      Novianty, Inna
      Kuntari, Wien
      Metadata
      Show full item record
      Abstract
      Penelitian ini bertujuan untuk mengembangkan fitur prediksi penjualan Roti Kalkun menggunakan Long Short Term Memory di Jimmy Hantu Foundation. Proses pengembangan dilakukan dengan pendekatan CRISP-DM, dimulai dari tahap pemahaman bisnis hingga implementasi model ke dalam sistem berbasis web. Data penjualan Roti Kalkun periode Maret 2023 hingga Januari 2025 digunakan sebagai acuan pelatihan model. Evaluasi kinerja model dilakukan menggunakan standar Mean Absolute Percentage Error (MAPE). Hasil pengujian menunjukkan bahwa model mampu menghasilkan prediksi dengan tingkat error sebesar 6,54%, yang termasuk dalam kategori sangat baik. Hal ini menunjukkan bahwa model yang dikembangkan dapat digunakan secara andal dalam membantu mendukung pengambilan keputusan di perusahaan
       
      This study aims to develop a sales prediction feature for Roti Kalkun using the Long Short Term Memory at the Jimmy Hantu Foundation. The development process follows the CRISP-DM approach, starting from business understanding to the deployment of the model into a web-based system. Sales data from March 2023 to January 2025 were used to train the model. Model performance was evaluated using the Mean Absolute Percentage Error (MAPE) metric. The testing results indicate that the model achieved a prediction error rate of 6.54%, which falls into the category of excellent performance. This demonstrates that the developed model can be reliably utilized to support decision-making processes within the company.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166830
      Collections
      • UT - Software Engineering Technology [182]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository