Pengembangan Fitur Prediksi Penjualan Roti Kalkun Menggunakan Long Short Term Memory di Jimmy Hantu Foundation
Date
2025Author
Saputra, Ananda Prathama
Novianty, Inna
Kuntari, Wien
Metadata
Show full item recordAbstract
Penelitian ini bertujuan untuk mengembangkan fitur prediksi penjualan Roti Kalkun menggunakan Long Short Term Memory di Jimmy Hantu Foundation. Proses pengembangan dilakukan dengan pendekatan CRISP-DM, dimulai dari tahap pemahaman bisnis hingga implementasi model ke dalam sistem berbasis web. Data penjualan Roti Kalkun periode Maret 2023 hingga Januari 2025 digunakan sebagai acuan pelatihan model. Evaluasi kinerja model dilakukan menggunakan standar Mean Absolute Percentage Error (MAPE). Hasil pengujian menunjukkan bahwa model mampu menghasilkan prediksi dengan tingkat error sebesar 6,54%, yang termasuk dalam kategori sangat baik. Hal ini menunjukkan bahwa model yang dikembangkan dapat digunakan secara andal dalam membantu mendukung pengambilan keputusan di perusahaan This study aims to develop a sales prediction feature for Roti Kalkun using the Long Short Term Memory at the Jimmy Hantu Foundation. The development process follows the CRISP-DM approach, starting from business understanding to the deployment of the model into a web-based system. Sales data from March 2023 to January 2025 were used to train the model. Model performance was evaluated using the Mean Absolute Percentage Error (MAPE) metric. The testing results indicate that the model achieved a prediction error rate of 6.54%, which falls into the category of excellent performance. This demonstrates that the developed model can be reliably utilized to support decision-making processes within the company.
