View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemodelan Berbasis Wilayah Data Dimensi Tinggi pada Kasus Stunting di Indonesia Menggunakan Generalized LASSO Termodifikasi

      Thumbnail
      View/Open
      Cover (547.1Kb)
      Fulltext (850.5Kb)
      Lampiran (324.0Kb)
      Date
      2025
      Author
      Darajati, Aida
      Rahardiantoro, Septian
      Wijayanto, Hari
      Metadata
      Show full item record
      Abstract
      Stunting masih menjadi permasalahan kesehatan di Indonesia, meskipun prevalensinya menurun hingga 6,1% di tahun 2024, beberapa provinsi masih memiliki tingkat prevalensi stunting sangat tinggi. Penelitian ini bertujuan untuk mengeksplorasi pola stunting di seluruh wilayah Indonesia, menelaah peforma model generalized LASSO dalam identifikasi dugaan koefisien wilayah yang berdekatan pada beberapa ukuran ketetanggaan, serta menjelaskan peubah-peubah yang paling berpengaruh terhadap stunting di Indonesia. Data bersumber dari Badan Pusat Statistik dan Kementerian Dalam Negeri tahun 2024, mencakup 38 provinsi dengan sepuluh peubah bebas. Analisis dilakukan menggunakan modifikasi elastic net pada generalized LASSO melalui penambahan komponen penalti khusus (D2) ke dalam regularisasi L2 untuk mengurangi dampak korelasi antar peubah bebas. Pemilihan parameter tuning optimal dilakukan menggunakan metode ALOCV. Model KNN (k = 2) dengan matriks D2 terpilih sebagai model terbaik berdasarkan kombinasi optimal dari derajat bebas, CV-error, dan nilai RMSE. Hasil analisis menunjukkan bahwa peubah gini ratio (Papua), unmet need pelayanan kesehatan (Sulawesi, Maluku, NTT), akses sanitasi layak (Sumatra, Kalimantan, Jawa bagian barat), dan ASI eksklusif (Sumatra, Jawa bagian barat) merupakan faktor paling berpengaruh terhadap prevalensi stunting di Indonesia tahun 2024. Dalam penelitian ini, penambahan matriks D2 yang diusulkan mampu mengecilkan CV-error melalui identifikasi dampak serupa dari pasangan peubah bebas berkorelasi tinggi terhadap stunting.
       
      Stunting remains a health concern in Indonesia despite its prevalence decreasing to 6.1% in 2024, several provinces still have a very high prevalence of stunting. This research aims to explore the spatial patterns of stunting across Indonesia, examine the performance of the generalized LASSO model in identifying estimated adjacent region coefficients on several neighborhood measures, and explain the most influential variables on stunting prevalence in Indonesia. The data used is sourced from the Statistics Indonesia (BPS) and the Ministry of Home Affairs in 2024, covering 38 provinces with ten independent variables. The analysis was conducted using an elastic net modification on generalized LASSO by adding a specific penalty component (D2) to the L2 regularization in order to reduce the effect of correlation among independent variables. Optimal tuning parameters were selected using the ALOCV method. The K-Nearest Neighbors (KNN) model with k = 2 and the D2 matrix was selected as the best model based on an optimal combination of degrees of freedom, lowest CV-error, and RMSE value. The analysis identified the gini ratio (Papua), unmet need for healthcare services (Sulawesi, Maluku, East Nusa Tenggara), access to proper sanitation (Sumatra, Kalimantan, Jakarta, Banten, West Java), and exclusive breastfeeding (Sumatra, Jakarta, Banten, West Java) as the most influential variables on stunting prevalence in 2024. In this study, the addition of the proposed D2 matrix was able to reduce the CV-error by identifying similar effects from pairs of highly correlated predictor variables on stunting.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166521
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository