View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kinerja Sistem Absensi Karyawan Berbasis Pencocokan Encoding Wajah dengan Library OpenCV

      Thumbnail
      View/Open
      Cover (3.474Mb)
      Fulltext (4.934Mb)
      Lampiran (376.4Kb)
      Date
      2025
      Author
      Yusuf, Analiah Fahlevy
      Fathonah, Lathifunnisa
      Metadata
      Show full item record
      Abstract
      ANALIAH FAHLEVY YUSUF. Analisis Kinerja Sistem Absensi Karyawan Berbasis Pencocokan Encoding Wajah dengan Library OpenCV. Dibimbing oleh LATHIFUNNISA FATHONAH. Penelitian ini bertujuan untuk menganalisis kinerja sistem absensi karyawan berbasis pengenalan wajah dengan menggunakan library OpenCV. Sistem ini menggunakan metode face encoding untuk mengubah citra wajah menjadi data numerik yang dicocokkan dengan database wajah yang telah terdaftar. Teknologi ini dikembangkan sebagai alternatif terhadap metode absensi manual yang masih memiliki berbagai keterbatasan. Penelitian dilakukan dengan pendekatan kuantitatif dan kualitatif melalui pengujian sistem serta survei kepada pengguna. Evaluasi performa sistem dilakukan menggunakan confusion matrix untuk mengukur akurasi, presisi, recall, dan F1-score. Hasil pengujian menunjukkan bahwa sistem memiliki tingkat akurasi yang tinggi dalam mencatat kehadiran sebesar 97,5% dan F1-Score 95,25%, meskipun masih ditemukan kendala seperti pengenalan wajah saat pengguna memakai aksesoris. Penelitian ini memberikan gambaran menyeluruh mengenai kinerja sistem absensi berbasis pengenalan wajah dan potensi penerapannya dalam lingkungan kerja yang lebih luas.
       
      ANALIAH FAHLEVY YUSUF. Performance Analysis of Employee Attendance Sistem Based on Face Encoding Matching with OpenCV Library. Dibimbing oleh LATHIFUNNISA FATHONAH. This study aims to analyze the performance of a facial recognition-based employee attendance system using the OpenCV library. This system uses a face encoding method to convert facial images into numerical data that is matched with a registered facial database. This technology was developed as an alternative to manual attendance methods, which still have various limitations. The study was conducted using a quantitative and qualitative approach through system testing and user surveys. System performance evaluation was conducted using a confusion matrix to measure accuracy, precision, recall, and F1-score. Test results showed that the system achieved a high accuracy rate of 97.5% in recording attendance and an F1-Score of 95.25%, although challenges such as facial recognition issues when users wear accessories were still identified. This study provides a comprehensive overview of the performance of the facial recognition-based attendance system and its potential application in a broader work environment.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166487
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository