View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Integrasi Monitoring Suhu, Kelembapan, dan pH pada Sistem Komposter Anaerob berbasis IoT

      Thumbnail
      View/Open
      Cover (1.484Mb)
      Fulltext (9.233Mb)
      Lampiran (838.8Kb)
      Date
      2025
      Author
      Ramdani, Gusti
      Mindara, Gema Parasti
      Metadata
      Show full item record
      Abstract
      Sampah organik masih menjadi tantangan serius di Indonesia. Pengomposan anaerob merupakan salah satu solusi potensial untuk mengurangi sampah organik. Penelitian ini merancangan sistem Internet of Things (IoT) untuk memantau proses pengomposan anaerob secara realtime menggunakan sensor suhu DS18B20, sensor kelembapan DHT11, dan sensor pH tanah. Data dari sensor diproses oleh ESP32 dan ditampilkan melalui website. Sistem ini dilengkapi dengan implementasi model machine learning Random Forest untuk memprediksi kebutuhan penyiraman secara otomatis berdasarkan pola perubahan parameter lingkungan yang terdeteksi oleh sensor. Hasil pengujian menunjukan sistem monitoring suhu, kelembapan, dan pH pada komposter anaerob berjalan dengan baik dan dapat dipantau melalui website. Mekanisme otomatisasi penyiraman berfungsi sesuai kondisi yang diperlukan. Model machine learning Random Forest menunjukan akurasi 99.28% untuk model klasifikasi, sementara Mean Absolute Error (MAE) sebesar 0.6728 L/min dan Root Mean Squared Error (RMSE) sebesar 0.8272 L/min pada data uji.
       
      Organic waste presents a significant challenge in Indonesia, and anaerobic composting offers a potential solution. This research designs an Internet of Things (IoT) system to monitor the anaerobic composting process in real-time using a DS18B20 temperature sensor, a DHT11 humidity sensor, and a soil pH sensor. Data from the sensors is processed by an ESP32 microcontroller and displayed via a website. The system is equipped with a Random Forest machine learning model to automatically predict watering needs based on patterns in the environmental parameters detected by the sensors. The test results show that the monitoring system for temperature, humidity, and pH functions well and can be monitored through the website, with the automated watering mechanism operating according to the required conditions. The machine learning model demonstrated an accuracy of 99.28% for the classification task, while the regression task achieved a Mean Absolute Error (MAE) of 0.6728 L/min and a Root Mean Squared Error (RMSE) of 0.8272 L/min on the test data.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166484
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository