View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Efektivitas Algoritma Adaptive Neuro-Fuzzy Inference System untuk Kontrol PPM pada Sistem Hirdroponik Berbasis IoT

      Thumbnail
      View/Open
      Cover (817.3Kb)
      Fulltext (2.779Mb)
      Lampiran (4.216Mb)
      Date
      2025
      Author
      Nurrohman, Yana
      Wicaksono, Aditya
      Nasir, Muhammad
      Metadata
      Show full item record
      Abstract
      Inovasi teknologi dibutuhkan dalam sistem hidroponik untuk meningkatkan efisiensi pengelolaan nutrisi dan pemantauan lingkungan. Penelitian ini merancang sistem monitoring dan kontrol berbasis Internet of Things (IoT) yang dilengkapi dengan model kontrol cerdas Adaptive Neuro-Fuzzy Inference System (ANFIS). Fokus perancangan mencakup integrasi sensor TDS, pH, suhu (DS18B20), dan ultrasonik (HC-SR04), komunikasi real-time antara ESP32 dan website melalui Firebase, serta pemrosesan data menggunakan ANFIS di server Python. Sistem ini dikembangkan untuk melakukan akuisisi data, pengambilan keputusan, dan kontrol otomatis pompa nutrisi dan air. Hasil pengujian menunjukkan performa sistem berbasis ANFIS untuk mengontrol PPM yang menjanjikan dalam menjaga kestabilan nutrisi larutan, dengan tingkat akurasi yang lebih baik dibandingkan kontrol konvensional.
       
      Technological innovation is needed in hydroponic systems to improve the efficiency of nutrient management and environmental monitoring. This study designs a monitoring and control system based on the Internet of Things (IoT), equipped with an intelligent control model using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The design focuses on integrating TDS, pH, temperature (DS18B20), and ultrasonic (HC-SR04) sensors, real-time communication between the ESP32 microcontroller and a website via Firebase, and data processing using ANFIS on a Python server. The system is developed to perform data acquisition, decision-making, and automatic control of nutrient and water pumps. Test results show that the ANFIS-based system demonstrates promising performance in controlling PPM and maintaining nutrient solution stability, with higher accuracy compared to conventional control methods.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166352
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository