Pengembangan Model Optimasi Irigasi untuk Mitigasi Global Warming Potential
Abstract
Peningkatan emisi gas rumah kaca (GRK) dari sektor pertanian, khususnya
budidaya padi, menjadi tantangan utama dalam mitigasi perubahan iklim. Penelitian
bertujuan mengembangkan model optimasi pengelolaan irigasi berbasis algoritma
genetika untuk meminimalkan Global Warming Potential (GWP) pada sistem
budidaya padi dengan pendekatan System of Rice Intensification (SRI). Penelitian
dilakukan di greenhouse dengan empat skema irigasi: tergenang, basah, kering, dan
mid-season drainage. GWP diukur berdasarkan emisi CH4 dan N2O, dengan hasil
tertinggi pada rezim tergenang sebesar 2.285,53 kg CO2-eq/ha/musim dan terendah
pada rezim kering sebesar -1.541,38 kg CO2-eq/ha/musim. Model prediksi GWP
dikembangkan menggunakan Artificial Neural Network dengan algoritma
Backpropagation, sedangkan optimasi pengelolaan air dengan Algoritma Genetika.
Hasil model mampu mengidentifikasi skenario tinggi muka air yang optimal pada
tiap fase pertumbuhan padi, yaitu awal 1,962 cm, vegetatif -1,363 cm, tengah 0,824
cm, dan akhir -8,788 cm. Kemudian dihasilkan nilai GWP 426,64 kg/ha/musim dan
produktivitas 507,28 g/m2. Temuan ini menunjukkan bahwa pengelolaan air
berbasis optimasi dapat menurunkan emisi GRK secara signifikan. Increased greenhouse gas (GHG) emissions from the agricultural sector,
particularly rice cultivation, pose a major challenge in climate change mitigation.
This study aims to develop a genetic algorithm-based irrigation management
optimization model to minimize Global Warming Potential (GWP) in rice
cultivation systems using the System of Rice Intensification (SRI) approach. The
study was conducted in a greenhouse with four irrigation schemes: flooded, wet,
dry, and mid-season drainage. GWP was measured based on CH4 and N2O
emissions, with the highest results in the flooded regime at 2,285.53 kg CO2-
eq/ha/season and the lowest in the dry regime at -1,541.38 kg CO2-eq/ha/season. A
GWP prediction model was developed using an Artificial Neural Network with a
Backpropagation algorithm, while water management optimization was performed
using a Genetic Algorithm. The model results were able to identify the optimal
water level scenarios for each rice growth phase: initial 1.962 cm, vegetative -1.363
cm, mid-season 0.824 cm, and final -8.788 cm. The resulting GWP value was
426.64 kg/ha/season, and productivity was 507.28 g/m². These findings indicate
that water management based on optimization can significantly reduce GHG
emissions.
