View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Sifat Elektroda sebagai Anoda untuk Baterai Li-ion Menggunakan Metode Machine Learning

      Thumbnail
      View/Open
      Cover (1.140Mb)
      Fulltext (2.181Mb)
      Lampiran (315.4Kb)
      Date
      2025
      Author
      Febrianty, Aliza Salsabila
      Faozan
      Alatas, Husin
      Metadata
      Show full item record
      Abstract
      Penelitian ini berfokus pada pembangunan model machine learning untuk prediksi sifat elektroda sebagai anoda baterai Li-ion, yang menjadi solusi untuk analisis struktur material dengan DFT yang dinilai kurang efektif dari segi waktu. Dataset yang digunakan terdiri dari 13 kolom dan 1.942 baris, fitur material pada dataset diuraikan dengan library Chemparse. Tiga kombinasi model machine learning yang berbasis decision tree yaitu Random Forest, XGBoost, dan CatBoost diterapkan pada penelitian ini dengan dua variabel target yaitu binding energy at most stable site (eV) dan charge transfer from Li at most stable site (e), masing-masing variabel target di-setting dengan dua skenario, yang pertama dengan melibatkan semua fitur sebagai variabel prediktor, dan kedua hanya melibatkan komposisi material. Performa model dievaluasi dengan metrik MAE, MSE, RMSE, dan R2. Hasil yang diperoleh dalam penelitian ini menunjukkan bahwa model terbaik yaitu model XGBoost dengan melibatkan semua fitur pada dataset sebagai variabel prediktor, selain itu didapatkan juga variabel yang paling berpengaruh dari segi unsur yaitu H dan dari segi bukan unsur adalah area (Å2).
       
      This study focuses on the development of machine learning models to predict the properties of electrode as potential anodes in lithium-ion batteries. The approach serves as time-efficient alternative to structure analysis using Density functional theory (DFT), which is often computationally expensive. The dataset used consists of 13 features and 1,942 entries, with material descriptors extracted using the Chemparse library. Three tree-based machine learning models Random Forest, XGBoost, and CatBoost were implemented, targeting two output variables, first binding energy at the most stable site (eV), and second, charge transfer from Li at the most stable site (e). Each target variable was analyzed under two feature scenarios: one involving all available features and another involving only elemental composition. Model performance was evaluated using MAE, MSE, RMSE, and R² metrics. The results indicate that XGBoost yielded the best predictive performance when all features were included. Additionally, feature importance analysis revealed that hydrogen (H) was the most influential elemental feature, while area (Å2) was the most significant non-elemental descriptor.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/166064
      Collections
      • UT - Physics [1230]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository