View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan AI Dalam Pendeteksian Daun Pakcoy Untuk Robot Penyiram Pestisida Berbasis Line Follower

      Thumbnail
      View/Open
      Cover (1.343Mb)
      Fulltext (4.793Mb)
      Lampiran (480.1Kb)
      Date
      2025
      Author
      Ansyafa, Khairunnissa Zahran
      Priandana, Karlisa
      Metadata
      Show full item record
      Abstract
      Teknologi modern semakin berperan dalam pertanian, terutama pada budidaya hortikultura seperti pakcoy yang rentan hama namun bernilai ekonomi tinggi. Penyemprotan pestisida secara manual menghadapi banyak tantangan, sehingga dibutuhkan pendekatan berbasis teknologi. Penelitian ini mengembangkan robot penyemprot pestisida berbasis AI dengan algoritma YOLO untuk mendeteksi tanaman pakcoy. Robot bergerak mengikuti jalur (line follower) dan menyemprotkan pestisida hanya saat tanaman terdeteksi oleh kamera. Sistem ini menggunakan Raspberry Pi 5 untuk pemrosesan citra dan ESP untuk mengontrol nozzle penyemprotan. Hasil penelitian menunjukkan sistem mampu mendeteksi tanaman pakcoy dalam berbagai kondisi, menerima koordinat tanaman dan melakukan penyemprotan secara tepat sasaran. Sistem ini terbukti dapat mengotomatisasi proses penyemprotan, mengurangi ketergantungan tenaga kerja, serta menurunkan risiko paparan pestisida bagi petani.
       
      Modern technology assumes an increasingly significant role in agriculture, including the cultivation of high-economic-value horticultural crops that are susceptible to pest damage. Conventional pesticide spraying often presents challenges, necessitating a technology-driven approach to enhance the spraying process. This research develops an AI-powered pesticide sprayer robot utilizing the YOLO algorithm for plant detection. The robot operates as a line follower, spraying pesticides only when a plant is detected by its camera. The system leverages a Raspberry Pi 5 for image processing and an ESP32 microcontroller to control the nozzle, ensuring more precise and organized spraying. The research focused on applying AI to detect pakcoy plants in cultivation, rather than classifying pest types. The results show the system successfully identified pakcoy plants under various conditions, transmitted their coordinates, and accurately sprayed pesticides towards them. This demonstrates the system's ability to automate precise spraying, reduce reliance on human labor, and minimize farmers' exposure to pesticides.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/165922
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository