Model Dinamika Terapi Kombinasi Chemotherapy dan Virotherapy pada Glioblastoma
Abstract
Glioblastoma bersifat resistan terhadap chemotherapy sehingga virotherapy
menjadi alternatif. Efektivitas virotherapy bergantung pada ekspresi reseptor virus,
seperti coxsackievirus and adenovirus receptor (CAR), yang dapat ditingkatkan
dengan MEK inhibitor. Kombinasi chemotherapy, virotherapy, dan MEK inhibitor
dilakukan untuk mengoptimalkan terapi. Model matematika berbasis persamaan
diferensial biasa (PDB) dengan metode Euler digunakan untuk menyimulasikan
dinamika terapi ini. Hasil simulasi menunjukkan terapi kombinasi lebih efektif
daripada monotherapy dalam membunuh sel kanker. Penjadwalan terapi yang tepat
dapat meningkatkan efektivitas pengobatan. Penambahan MEK inhibitor dalam
tingkat penghambatan yang sesuai terbukti meningkatkan efektivitas terapi melalui
peningkatan ekspresi CAR dan kontrol replikasi virus. Parameter yang paling
berpengaruh dengan interaksi/nonlinearitas tinggi adalah laju infeksi sel kanker
oleh virus, laju pertumbuhan sel kanker, viral burst size, dan laju lisis uninfected
cancer cell oleh chemotherapy. Penelitian ini dapat dikembangkan dengan
mempertimbangkan variabel biologis lain agar lebih sesuai dengan kondisi real. Glioblastoma is resistant to chemotherapy, making virotherapy an alternative
treatment option. The effectiveness of virotherapy depends on the expression of
viral receptors, such as the coxsackievirus and adenovirus receptor (CAR), which
can be enhanced using MEK inhibitors. A combination of chemotherapy,
virotherapy, and MEK inhibitors is used to optimize treatment. A mathematical
model based on ordinary differential equations (ODEs) using the Euler method was
used to simulate the dynamics of this therapy. Simulation results showed that
combination therapy is more effective than monotherapy in killing cancer cells.
Proper scheduling of therapy can enhance treatment efficacy. The addition of MEK
inhibitors at appropriate doses was found to enhance therapy efficacy through
increased CAR expression and control of viral replication. The parameters most
influenced by high interaction/nonlinearity are the rate of cancer cell infection by
the virus, the rate of cancer cell growth, viral burst size, and the rate of lysis of
uninfected cancer cells by chemotherapy. This research can be further developed
by considering other biological variables to better align with real-world conditions.
Collections
- UT - Physics [1230]
