View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Optimalisasi Parameter Breit-Wigner untuk Klasifikasi Partikel Resonansi dengan Physics-Informed Neural Network

      Thumbnail
      View/Open
      Cover (283.4Kb)
      Fulltext (3.374Mb)
      Date
      2025
      Author
      Khoriah, Siti
      Puspita, R. Tony Ibnu Sumaryada Wijaya
      Yani, Sitti
      Metadata
      Show full item record
      Abstract
      Resonansi partikel muncul sebagai lonjakan massa invarian akibat peluruhan partikel berumur pendek. Penelitian ini bertujuan mengestimasi parameter resonansi berupa massa pusat dan lebar peluruhan menggunakan physics-informed neural network (PINN), sekaligus mengklasifikasikan tiga partikel resonansi, yaitu J/?, ?, dan Z, beserta background. Data berasal dari eksperimen CMS, berupa dimuon dan dielektron pada rentang massa invarian 2-110 GeV. Tahapan penelitian meliputi pra-pemrosesan, transformasi data, pendefinisian data signal dan background, estimasi parameter berbasis distribusi Breit-Wigner, serta klasifikasi partikel resonansi. Hasil menunjukkan PINN mampu memprediksi parameter dengan galat relatif <1%, sesuai referensi PDG. Pada klasifikasi, PINN (? = 0,1) mencapai akurasi tertinggi 94,21% (data latih:uji = 90:10), melampaui model neural network dan random forest. Namun, model dengan PINN membutuhkan waktu pengujian yang lebih lama karena penambahan perhitungan physics loss. Pengintegrasian hukum fisika yang bersesuaian dengan dataset pada model machine learning dapat meningkatkan akurasi sehingga metode ini menjadi alternatif untuk analisis data fisika partikel.
       
      Particle resonance is generated from invariant mass spikes due to the decay of short-lived particles. This study aims to estimate resonance parameters such as center mass and decay width using physics-informed neural network (PINN), as well as classify three resonance particles, namely J/?, ?, and Z, along with the background. The data comes from the CMS experiment, in the form of dimuons and dielectrons in the invariant mass range of 2-110 GeV. The research stages include data pre-processing, data transformation, defining signal and background data, Breit-Wigner distribution-based parameter estimation, and resonance particle classification. The results show that PINN is able to predict the resonance parameters with <1% relative error, as per the PDG reference. For classification, PINN (? = 0,1) achieved the highest accuracy of 94,21% (training:testing data ratio = 90:10), outperforming neural network and random forest models. However, testing with PINN takes longer due to the additional physics loss calculation. Integration of the laws of physics that correspond to the dataset in machine learning model can improve accuracy, providing this method an alternative for particle physics data analysis.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/165466
      Collections
      • UT - Physics [1230]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository