View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Kestabilan pada Model Matematika Penyebaran Hepatitis B dengan Kompartemen Pengobatan

      Thumbnail
      View/Open
      Cover (1.938Mb)
      Fulltext (2.316Mb)
      Lampiran (2.756Mb)
      Date
      2025
      Author
      Siregar, Raudah Rizky Ramadhani
      Jaharuddin
      Mas'oed, Teduh Wulandari
      Metadata
      Show full item record
      Abstract
      Hepatitis B merupakan salah satu masalah kesehatan global yang disebabkan oleh virus hepatitis B (HBV) dan dapat menyebar melalui kontak dengan darah atau cairan tubuh yang terinfeksi. Penyakit ini dapat bersifat akut maupun kronis, dengan risiko komplikasi serius seperti sirosis dan kanker hati. Penelitian ini merekonstruksi model matematika penyebaran hepatitis B. Analisis menunjukkan adanya dua titik tetap dan bilangan reproduksi dasar (R0) yang kemudian digunakan untuk melakukan analisis sensitivitas parameternya. Kestabilan titik tetap ditentukan oleh nilai R0. Jika R0 < 1, maka titik tetap bebas penyakit bersifat stabil asimtotik lokal dan global, sedangkan jika R0 > 1, maka titik tetap bebas penyakit bersifat tidak stabil. Berdasarkan analisis sensitivitas, parameter laju penularan individu yang terinfeksi (??1) dan laju transisi dari populasi yang dirawat menjadi sembuh (??4) memiliki pengaruh signifikan terhadap penyebaran virus. Pengurangan laju penularan serta peningkatan laju kesembuhan dapat menekan penyebaran penyakit hepatitis B.
       
      Hepatitis B is a global health problem caused by the hepatitis B virus (HBV) and can be spread through contact with infected blood or body fluids. This disease can be acute or chronic, with the risk of serious complications such as cirrhosis and liver cancer. This study reconstructs a mathematical model of the spread of hepatitis B. The analysis shows that there are two fixed points and a basic reproduction number (R0) which are then used to conduct a sensitivity analysis of its parameters. The stability of the fixed point is determined by the value of R0. If R0 < 1, then the disease-free fixed point is asymptotically stable locally and globally, while if R0 > 1, then the disease-free fixed point is unstable. Based on the sensitivity analysis, the parameters of the transmission rate of infected individuals (??1) and the transition rate from the treated population to cured (??4) have a significant effect on the spread of the virus. Reducing the transmission rate and increasing the recovery rate can suppress the spread of hepatitis B.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/165187
      Collections
      • UT - Mathematics [89]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository