Show simple item record

dc.contributor.advisorSolahudin, Mohamad
dc.contributor.authorAbrar, Muhammad Nibroos
dc.date.accessioned2025-07-17T02:20:49Z
dc.date.available2025-07-17T02:20:49Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/165133
dc.description.abstractPerkebunan durian merupakan salah satu sektor hortikultura bernilai ekonomi tinggi yang membutuhkan dukungan teknologi dalam pengelolaannya. Namun, sebagian besar petani masih menggunakan metode konvensional yang kurang efisien dan tidak memiliki basis data memadai. Hal ini mengakibatkan pengelolaan perkebunan menjadi tidak optimal sehingga produktivitas dan keberlanjutan usaha berpotensi mengalami hambatan. Penelitian ini bertujuan mengembangkan sistem informasi manajemen perkebunan durian berbasis website dengan analisis citra udara menggunakan deep learning guna mendukung efisiensi operasional dan pengambilan keputusan berbasis data. Data dikumpulkan dari lahan perkebunan durian seluas 20,28 hektare di Rawabolang Farm, Kecamatan Jampang Tengah, Kabupaten Sukabumi melalui pemetaan drone dan survei lapangan. Deteksi pohon durian dilakukan menggunakan model YOLOv8 segmentation dengan hasil evaluasi performa mencakup akurasi 91,27%, presisi 96,24%, recall 94,89%, dan skor F1 95,56%. Sistem dibangun menggunakan framework Laravel, basis data PostgreSQL dengan ekstensi PostGIS, serta antarmuka peta interaktif dengan Leaflet. Fitur pada sistem meliputi visualisasi data, peta interaktif dan analisis spasial, serta inventaris kegiatan, penjadwalan, pengelolaan stok, dan fitur pendukung lainnya. Pengujian kelayakan sistem menggunakan System Usability Scale (SUS) menunjukkan skor rata-rata 75, yang termasuk dalam kategori baik, grade B, dan dapat diterima. Selain itu, sistem berfungsi baik pada berbagai perangkat dan jenis peramban. Dengan demikian, sistem berpotensi diterapkan secara luas dalam pengelolaan kebun durian untuk menunjang efisiensi dan keberlanjutan pertanian presisi.
dc.description.abstractDurian plantations represent a high-value horticultural sector that requires technological support for effective management. However, most farmers still rely on conventional methods that are inefficient and lack adequate data infrastructure. This situation results in suboptimal plantation management, potentially hindering productivity and business sustainability. This study aims to develop a web-based durian plantation management information system utilizing aerial imagery analysis powered by deep learning to enhance operational efficiency and support data-driven decision-making. Data were collected from a 20.28-hectare durian plantation at Rawabolang Farm, Jampang Tengah Subdistrict, Sukabumi Regency, through drone mapping and field surveys. Durian tree detection was performed using the YOLOv8 segmentation model, with performance metrics including an accuracy of 91.27%, precision of 96.24%, recall of 94.89%, and F1-score of 95.56%. The system was developed using the Laravel framework, a PostgreSQL database with the PostGIS extension, and an interactive map interface built with Leaflet. Key system features include data visualization, interactive maps and spatial analysis, activity inventory, scheduling, stock management, and other supporting functionalities. System feasibility testing using the System Usability Scale (SUS) yielded an average score of 75, categorized as good, grade B, and acceptable. Additionally, the system demonstrated reliable performance across various devices and web browsers. Therefore, the system shows strong potential for widespread implementation in durian plantation management to support the efficiency and sustainability of precision agriculture.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleSistem Informasi Manajemen Perkebunan Durian Berbasis Websiteid
dc.title.alternativeWeb-Based Durian Plantation Management Information System
dc.typeSkripsi
dc.subject.keyworddeep learningid
dc.subject.keywordDurianid
dc.subject.keywordSistem Informasiid
dc.subject.keywordsystem usability scaleid
dc.subject.keywordYOLOid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record