View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Fisheries and Marine Science
      • UT - Marine Science And Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Variabilitas Spasial dan Temporal Oseanografi Permukaan di Wilayah Upwelling Selatan Jawa – Nusa Tenggara (WPPNRI 573)

      Thumbnail
      View/Open
      Cover (2.290Mb)
      Fulltext (7.557Mb)
      Lampiran (2.133Mb)
      Date
      2025
      Author
      Lumbangaol , Afriel Alex Handro
      Atmadipoera, Agus Saleh
      Herdiyeni, Yeni
      Metadata
      Show full item record
      Abstract
      Upwelling di perairan selatan Jawa–Nusa Tenggara, yang merupakan bagian dari Wilayah Pengelolaan Perikanan Negara Republik Indonesia (WPPNRI 573), merupakan fenomena oseanografi kunci yang mendukung produktivitas primer dan sektor perikanan laut. Penelitian ini bertujuan untuk menganalisis variabilitas spasial dan temporal upwelling serta keterkaitannya dengan dinamika oseanografi lokal dan fenomena iklim antar-tahunan selama periode 2000–2020. Analisis dilakukan dengan menggunakan data citra satelit suhu permukaan laut (SPL) dan klorofil-a, serta data reanalisis untuk arus laut (komponen U dan V) dan angin permukaan (U10, V10). Hasil penelitian menunjukkan bahwa upwelling mencapai puncaknya pada bulan Agustus (selama musim angin Muson Tenggara), yang ditandai dengan penurunan SPL hingga 26,6°C dan peningkatan konsentrasi klorofil-a hingga 1 mg/m³. Mekanisme upwelling didorong oleh angin Muson Tenggara yang memicu wind stress curl negatif dan transport Ekman ke arah laut terbuka, dengan volume transport mencapai sekitar ±0,4 Sv. Energi kinetik arus permukaan juga menunjukkan peningkatan signifikan selama Musim Tenggara. Variabilitas antar-tahunan menunjukkan bahwa upwelling mengalami penguatan selama peristiwa El Niño dan IOD positif (+), serta melemah selama fase La Niña dan IOD negatif (–). Analisis densitas spektral silang (Cross Power Spectral Density/CPSD) pada SPL menunjukkan koherensi yang kuat dengan propagasi spasial ke arah timur dan pergeseran fase sekitar ±6 hari. Studi ini merekomendasikan integrasi data observasi in-situ serta penerapan pendekatan machine learning dan deep learning untuk meningkatkan akurasi deteksi dan prakiraan kejadian upwelling
       
      Upwelling in the southern waters of Java–Nusa Tenggara, part of the Indonesian Fisheries Management Area (WPPNRI 573), is a key oceanographic phenomenon that supports primary productivity and the marine fisheries sector. This study aims to analyze the spatial and temporal variability of upwelling and its relationship with local oceanographic dynamics and interannual climate phenomena over the period 2000–2020. The analysis utilizes satellite-derived sea surface temperature (SST) and chlorophyll-a data, along with reanalysis datasets for ocean currents (U, V) and wind components (U10, V10). The results indicate that upwelling reaches its peak in August (during the southeast monsoon), marked by SST cooling down to 26.6°C and an increase in chlorophyll-a concentrations up to 1 mg/m³. The upwelling mechanism is driven by southeasterly monsoon winds, which induce negative wind stress curl and Ekman transport directed offshore, with transport volumes reaching approximately ±0.4 Sv. Kinetic energy of the surface currents also shows a significant increase during the southeast monsoon. Interannual variability reveals intensified upwelling during El Niño and positive IOD (+) events and weakened upwelling during La Niña and negative IOD (–) phases. Cross-power spectral density (PSD) analysis of SST shows strong coherence with an eastward spatial propagation and a phase lag of approximately ±6 days. This study recommends the integration of in-situ observations and the application of machine learning and deep learning approaches to improve the accuracy of upwelling detection and forecasting
       
      URI
      http://repository.ipb.ac.id/handle/123456789/165053
      Collections
      • UT - Marine Science And Technology [2093]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository