View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Actuaria
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan Kinerja Metode Naïve Bayes dan Random Forest untuk Klasifikasi Risiko Saham Perbankan

      Thumbnail
      View/Open
      Cover (1.223Mb)
      Fulltext (2.285Mb)
      Lampiran (1.165Mb)
      Date
      2025
      Author
      As-Sami, Naufal Irsyad
      Mangku, I Wayan
      Ruhiyat
      Metadata
      Show full item record
      Abstract
      Ketidakpastian risiko pada investasi saham menuntut pendekatan yang andal dalam menentukan keputusan investasi. Salah satu pendekatan yang dapat digunakan adalah metode klasifikasi seperti naïve Bayes dan random forest. Penelitian ini bertujuan membandingkan kinerja metode naïve Bayes dan random forest dalam mengklasifikasikan kelas risiko berupa risiko tinggi dan risiko rendah pada 25 saham sektor perbankan di Indonesia. Namun, tidak ada kriteria yang pasti dalam mengelompokkan kelas risiko saham. Dengan demikian, pengelompokan kelas data aktual memanfaatkan volatilitas sebagai gambaran fluktuatif dari risiko dengan nilai mediannya sebagai pembatas untuk kelas risiko tinggi dan kelas risiko rendah. Kedua metode klasifikasi yang digunakan bekerja berdasarkan variabel prediktor berupa return dan price range. Naïve Bayes memodelkan distribusi Gaussian untuk menghitung probabilitas kelas, sedangkan random forest membangun serangkaian pohon keputusan untuk menentukan kelas klasifikasi berdasarkan pemungutan suara mayoritas. Evaluasi kinerja kedua metode klasifikasi terhadap data uji menggunakan metrik akurasi, presisi, recall, dan f1-score. Hasil yang diperoleh menunjukkan bahwa random forest dengan akurasi tahunan sebesar 0.8433, presisi 0.7769, recall 0.8246, dan f1-score 0.8000 adalah metode klasifikasi yang lebih baik secara keseluruhan dibandingkan naïve Bayes dengan akurasi tahunan sebesar 0.7833, presisi 0.8182, recall 0.5526, dan f1-score 0.6597.
       
      The uncertainty of risk in stock investment demands a reliable approach to support investment decision-making. One such approach is the use of classification methods, such as naïve Bayes and random forest. This study aims to compare the performance of the naïve Bayes and random forest methods in classifying risk classes, namely high risk and low risk, for 25 banking sector stocks in Indonesia. However, there are no definite criteria for grouping stock risk classes. Therefore, the actual data classes are grouped using volatility as a representation of risk fluctuations, with its median value serving as the threshold between high-risk and low-risk classes. Both classification methods work based on predictor variables, namely return and price range. Naïve Bayes models a Gaussian distribution to calculate class probabilities, while random forest builds an ensemble of decision trees to determine the classification outcome based on majority voting. The performance of both classification methods on the test data is evaluated using accuracy, precision, recall, and f1-score metrics. The results show that random forest, with an annual accuracy of 0.8433, precision of 0.7769, recall of 0.8246, and f1-score of 0.8000, is an overall better classification method compared to naïve Bayes, which achieves an annual accuracy of 0.7833, precision of 0.8182, recall of 0.5526, and f1-score of 0.6597.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/165050
      Collections
      • UT - Actuaria [56]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository