Pemodelan Curah Hujan Bulanan di Kabupaten Majalengka Menggunakan Autoregressive Distributed Lag (ARDL)
Date
2025Author
Rahmaisty, Fathia
Nurdiati, Sri
Najib, Mohamad Khoirun
Metadata
Show full item recordAbstract
Curah hujan merupakan komponen iklim yang berperan penting dalam sektor pertanian, ketersediaan air bersih, dan sumber daya alam di Indonesia. Penelitian ini memodelkan curah hujan bulanan di Kabupaten Majalengka dengan pendekatan Autoregressive Distributed Lag (ARDL), menggunakan data observasi BMKG serta simulasi iklim CMIP6 pada tiga skenario perubahan emisi, yaitu SSP1-2.6, SSP2-4.5, dan SSP5-8.5. Model dibangun melalui pemilihan lag optimum berdasarkan RMSE dan AIC, estimasi parameter dengan metode Ordinary Least Squares, serta uji kointegrasi menggunakan Bound Testing. Hasil penelitian menunjukkan adanya hubungan jangka panjang antara curah hujan observasi BMKG dan proyeksi CMIP6 pada seluruh skenario. Dalam jangka panjang, peningkatan curah hujan proyeksi CMIP6 cenderung diikuti oleh penurunan pada curah hujan observasi. Sementara itu, dalam jangka pendek, peningkatan curah hujan proyeksi cenderung diikuti peningkatan pada curah hujan observasi. Hasil evaluasi menunjukkan ARDL dengan skenario SSP1-2.6 memiliki performa terbaik dalam merepresentasikan pola curah hujan di wilayah Majalengka. Rainfall is one of the key climate components affecting various sectors in Indonesia, including agriculture, clean water supply, and natural resource management. This study aims to model monthly rainfall in Majalengka Regency using the Autoregressive Distributed Lag (ARDL) approach based on observational data from BMKG and climate simulation data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under three emission scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. The model was constructed through optimal lag selection based on AIC and RMSE, parameter estimation using Ordinary Least Squares, and cointegration testing using the Bound Testing approach. The results indicate a long-term relationship between BMKG-observed rainfall and CMIP6 projections across all scenarios. In the long term, an increase in projected rainfall from CMIP6 tends to be followed by a decrease in observed rainfall. In contrast, in the short term, increases in projected rainfall tend to coincide with increases in observed rainfall. Model evaluation shows that the ARDL model under the SSP1-2.6 scenario performs best in representing rainfall patterns in the Majalengka region.
Collections
- UT - Mathematics [89]
