Show simple item record

dc.contributor.advisorSianturi, Paian
dc.contributor.advisorKusnanto, Ali
dc.contributor.authorKholik, Imam Nur
dc.date.accessioned2025-07-12T07:55:34Z
dc.date.available2025-07-12T07:55:34Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/164801
dc.description.abstractPertussis merupakan penyakit menular yang disebabkan oleh bakteri Bordetella pertussis dan dapat menyebabkan gangguan pernapasan serius, terutama pada bayi dan anak-anak. Karya ilmiah ini memodelkan penyebaran Pertussis menggunakan model SEIR yang membagi populasi ke dalam empat subpopulasi yaitu Susceptible, Exposed, Infected, Recovered. Tujuannya adalah menganalisis kestabilan titik tetap, menghitung bilangan reproduksi dasar (R0), serta mengamati pengaruh beberapa parameter melalui simulasi numerik. Kestabilan titik tetap bebas penyakit dan endemik dianalisis secara lokal dengan kriteria Routh-Hurwitz dan secara global melalui pendekatan fungsi Lyapunov. Titik tetap bebas penyakit stabil jika R0<1, sedangkan titik tetap endemik stabil saat R0>1. Simulasi dilakukan terhadap empat parameter, yaitu laju kelahiran/kematian, penularan, infeksi, dan pemulihan. Kombinasi variasi laju penularan dan pemulihan memberikan pengaruh paling besar terhadap R0, sehingga menjadi langkah paling efektif dalam pengendalian Pertussis menuju kondisi bebas penyakit.
dc.description.abstractPertussis is a contagious disease caused by the Bordetella pertussis bacterium and can lead to serious respiratory problems, especially in infants and children. This scientific work models the spread of Pertussis using the SEIR model, which divides the population into four subpopulations, namely Susceptible, Exposed, Infected, and Recovered. The aim is to analyze the stability of equilibrium points, calculate the basic reproduction number (R0), and observe the influence of several parameters through numerical simulations. The stability of both the diseasefree and endemic equilibrium points is analyzed locally using the Routh-Hurwitz criterion and globally through the Lyapunov function approach. The disease-free equilibrium is stable when R0<1, while the endemic equilibrium is stable when R0>1 . Simulations are conducted on four parameters: birth/death rate, transmission rate, infection rate, and recovery rate. The combination of variations in transmission and recovery rates has the greatest impact on R0, making it the most effective strategy for controlling Pertussis toward a disease-free state.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePengaruh Laju Penularan dan Laju Pemulihan terhadap Penyebaran Penyakit Pertussis dengan Model SEIRid
dc.title.alternativeThe Effect of Transmission Rate and Recovery Rate on the Spread of Pertussis Using the SEIR Model
dc.typeSkripsi
dc.subject.keywordanalisis kestabilanid
dc.subject.keywordSEIRid
dc.subject.keywordbilangan reproduksi dasarid
dc.subject.keywordPertussisid
dc.subject.keywordsimulasi numerikid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record