View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengaruh Laju Penularan dan Laju Pemulihan terhadap Penyebaran Penyakit Pertussis dengan Model SEIR

      Thumbnail
      View/Open
      Cover (519.2Kb)
      Fulltext (1.114Mb)
      Lampiran (1.381Mb)
      Date
      2025
      Author
      Kholik, Imam Nur
      Sianturi, Paian
      Kusnanto, Ali
      Metadata
      Show full item record
      Abstract
      Pertussis merupakan penyakit menular yang disebabkan oleh bakteri Bordetella pertussis dan dapat menyebabkan gangguan pernapasan serius, terutama pada bayi dan anak-anak. Karya ilmiah ini memodelkan penyebaran Pertussis menggunakan model SEIR yang membagi populasi ke dalam empat subpopulasi yaitu Susceptible, Exposed, Infected, Recovered. Tujuannya adalah menganalisis kestabilan titik tetap, menghitung bilangan reproduksi dasar (R0), serta mengamati pengaruh beberapa parameter melalui simulasi numerik. Kestabilan titik tetap bebas penyakit dan endemik dianalisis secara lokal dengan kriteria Routh-Hurwitz dan secara global melalui pendekatan fungsi Lyapunov. Titik tetap bebas penyakit stabil jika R0<1, sedangkan titik tetap endemik stabil saat R0>1. Simulasi dilakukan terhadap empat parameter, yaitu laju kelahiran/kematian, penularan, infeksi, dan pemulihan. Kombinasi variasi laju penularan dan pemulihan memberikan pengaruh paling besar terhadap R0, sehingga menjadi langkah paling efektif dalam pengendalian Pertussis menuju kondisi bebas penyakit.
       
      Pertussis is a contagious disease caused by the Bordetella pertussis bacterium and can lead to serious respiratory problems, especially in infants and children. This scientific work models the spread of Pertussis using the SEIR model, which divides the population into four subpopulations, namely Susceptible, Exposed, Infected, and Recovered. The aim is to analyze the stability of equilibrium points, calculate the basic reproduction number (R0), and observe the influence of several parameters through numerical simulations. The stability of both the diseasefree and endemic equilibrium points is analyzed locally using the Routh-Hurwitz criterion and globally through the Lyapunov function approach. The disease-free equilibrium is stable when R0<1, while the endemic equilibrium is stable when R0>1 . Simulations are conducted on four parameters: birth/death rate, transmission rate, infection rate, and recovery rate. The combination of variations in transmission and recovery rates has the greatest impact on R0, making it the most effective strategy for controlling Pertussis toward a disease-free state.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/164801
      Collections
      • UT - Mathematics [89]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository