View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Mathematics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Interpolasi Spasial Data Curah Hujan Stasiun Wilayah Danau Toba dengan Ordinary dan External Drift Kriging

      Thumbnail
      View/Open
      Cover (1.936Mb)
      Fulltext (5.818Mb)
      Lampiran (3.947Mb)
      Date
      2025
      Author
      Abisha, Nicholas
      Nurdiati, Sri
      Nugrahani, Endar Hasafah
      Metadata
      Show full item record
      Abstract
      Penelitian ini bertujuan melakukan interpolasi curah hujan di wilayah Danau Toba dengan ordinary kriging (OK) dan external drift kriging (EDK) dengan elevasi (Elev) dan jarak dari danau (JDD) sebagai peubah drift. Data curah hujan dari 34 stasiun (2007–2017) digunakan dengan tiga perlakuan: (1) tanpa imputasi, (2) hanya stasiun dengan data lengkap, (3) semua stasiun dengan imputasi Knearest-neighbors (KNN). Evaluasi dilakukan dengan leave-one-out crossvalidation dengan metrik RMSE, MAE, dan MAPE. Hasil menunjukkan bahwa ketiga metode menghasilkan nilai akurasi yang relatif mirip pada perlakuan 1 dan 3. Namun, EDK_JDD lebih akurat dibandingkan OK dan EDK_Elev pada perlakuan 2 yang menggunakan lebih sedikit stasiun. Dapat disimpulkan bahwa JDD lebih relevan daripada Elev sebagai drift. Perlakuan imputasi KNN tidak meningkatkan akurasi, akan tetapi tetap berguna untuk menjaga kelengkapan data sehingga memungkinkan penggunaan seluruh stasiun dalam proses interpolasi.
       
      This study aims to interpolate rainfall in the Lake Toba region using ordinary kriging (OK) and external drift kriging (EDK) with elevation (Elev) and distance from the lake (JDD) as drift variables. Rainfall data from 34 stations (2007–2017) were used with three treatments: (1) without imputation, (2) only stations with complete data, (3) all stations with K-nearest-neighbors (KNN) imputation. The evaluation was carried out using leave-one-out cross-validation with RMSE, MAE, and MAPE metrics. The results showed that the three methods produced relatively similar accuracy values in treatments 1 and 3. However, EDK_JDD was more accurate than OK and EDK_Elev in treatment 2 which used fewer stations. It can be concluded that JDD is more relevant than Elev as a drift. The KNN imputation treatment did not improve accuracy, but was still useful for maintaining data completeness so that all stations could be used in the interpolation process.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/164564
      Collections
      • UT - Mathematics [89]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository