View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Implementasi CCTV Berbasis Kecerdasan Buatan untuk Pemantauan Alat Pelindung Diri pada Buruh Proyek Menggunakan Algoritma YOLOv8

      Thumbnail
      View/Open
      Cover (1.058Mb)
      Fulltext (3.254Mb)
      Lampiran (470.3Kb)
      Date
      2025
      Author
      Dani, Mohamad Fikih Amar
      Fathonah, Lathifunnisa
      Metadata
      Show full item record
      Abstract
      Tingginya angka kecelakaan kerja di sektor konstruksi sering kali berkaitan dengan rendahnya kepatuhan penggunaan Alat Pelindung Diri (APD), sementara pengawasan manual oleh petugas Kesehatan dan Keselamatan Kerja (K3) bersifat terbatas. Penelitian ini bertujuan untuk mengembangkan sistem pemantauan otomatis berbasis kecerdasan buatan (Artificial Intelligence, AI) untuk meningkatkan standar keselamatan kerja. Metode yang digunakan adalah implementasi sistem Closed-Circuit Television (CCTV) yang terintegrasi dengan perangkat Raspberry Pi 5 dan akselerator AI Hailo-8L. Sistem ini menjalankan model deteksi objek YOLOv8 untuk mengidentifikasi penggunaan APD seperti helm, rompi, dan sepatu keselamatan secara real-time. Hasil penelitian menunjukkan bahwa sistem mampu mendeteksi pelanggaran secara otomatis dan mengirimkan datanya ke sebuah dasbor web pemantauan. Dengan implementasi sistem ini, diharapkan pengawasan terhadap kepatuhan penggunaan APD dapat menjadi lebih ketat dan respons terhadap pelanggaran menjadi lebih cepat, sehingga berpotensi mengurangi risiko kecelakaan kerja di lingkungan proyek.
       
      The high rate of work-related accidents in the construction sector is often associated with low compliance in the use of Personal Protective Equipment (PPE), while manual supervision by Health, Safety, and Environment (HSE) officers is limited. This research aims to develop an automated monitoring system based on artificial intelligence (AI) to improve work safety standards. The method used is the implementation of a Closed-Circuit Television (CCTV) system integrated with a Raspberry Pi 5 device and a Hailo-8L AI accelerator. This system runs the YOLOv8 object detection model to identify the use of PPE such as helmets, vests, and safety boots in real-time. The results indicate that the system can automatically detect violations and send the data to a web-based monitoring dashboard. With the implementation of this system, it is expected that supervision of PPE compliance can become more stringent and responses to violations can be faster, thereby potentially reducing the risk of work accidents in project environments.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/163997
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository