Aplikasi Film Tipis Berbasis Bahan Feroelektrik Ba0,75Sr0,25TiO3 Didadah Cu sebagai Sensor Getaran dalam Sistem IoT
Abstract
Penelitian ini bertujuan untuk mengembangkan sensor getaran berbasis material feroelektrik Ba0,75Sr0,25TiO3 (BST) yang didadah Cu dan mengintegrasikannya dalam sistem pemantauan berbasis Internet of Things (IoT). Sensor BST dirangkai dalam struktur sandwich dan terhubung ke modul ADS1115 yang kemudian dikomunikasikan ke mikrokontroler ESP32 melalui protokol I2C. Sistem ini dirancang untuk mendeteksi perubahan tegangan akibat stimulus mekanik berupa ketukan, dan menghasilkan parameter Pulse per Minute (PPM) serta Average Voltage Jump. Data hasil pengukuran dikirim secara real-time ke server InfluxDB untuk disimpan dan divisualisasikan. Hasil pengujian menunjukkan bahwa sensor dengan fraksi mol Ba0,75Sr0,25TiO3 tanpa pendadahan Cu memberikan performa paling optimal dengan rata-rata lonjakan tegangan sebesar 489 mV dan akurasi mencapai 97%. Sistem ini menunjukkan potensi besar dalam aplikasi pemantauan tekanan dan getaran secara real-time, serta valid secara prinsip melalui konsep piezoelektrik. This research aims to develop a vibration sensor based on the ferroelectric
material Ba0.75Sr0.25TiO3 (BST) doped with Cu and integrate it into an Internet of
Things (IoT)-based monitoring system. The BST sensor was arranged in a sandwich
structure and connected to an ADS1115 module, which then communicates with
the ESP32 microcontroller via the I2C protocol. The system is designed to detect
voltage changes due to mechanical stimuli, such as tapping, and generates two main
parameters: Pulse per Minute (PPM) and Average Voltage Jump (AVJ). The
measurement data are transmitted in real-time to an InfluxDB server for storage and
visualization. The test results showed that the sensor with a Ba0.75Sr0.25TiO3 molar
fraction without Cu doping produced the most optimal performance, with an
average voltage jump of 489 mV and an accuracy of up to 97%. The system
demonstrates strong potential for real-time pressure and vibration monitoring
applications and is fundamentally validated by piezoelectric theory.
