View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Conservation of Forest and Ecotourism
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Forestry and Environment
      • UT - Conservation of Forest and Ecotourism
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pemetaan Kerusakan Mangrove Menggunakan Data LiDAR di Pantai Bahagia, Muara Gembong, Kabupaten Bekasi

      Thumbnail
      View/Open
      Cover (648.4Kb)
      Fulltext (2.788Mb)
      Lampiran (1.403Mb)
      Date
      2025
      Author
      Ani, Sylvia Devi
      Setiawan, Yudi
      Wijayanto, Arif Kurnia
      Metadata
      Show full item record
      Abstract
      Mangrove merupakan ekosistem yang sangat penting keberadaannya, namun eksistensinya semakin terancam hingga hari ini. Pemetaan kerusakan mangrove menjadi penting dalam upaya rehabilitasi dan pengelolaan kawasan mangrove. Tersedianya data struktur hutan oleh platform GEDI (Global Ecosystem Dynamic Investigation) dapat digunakan dalam memetakan kerusakan mangrove karena menyediakan data struktur tiga dimensi hutan di permukaan bumi yang beresolusi tinggi dengan teknologi LiDAR. Penelitian ini bertujuan membangun model estimasi kerapatan tutupan tajuk mangrove menggunakan dara LiDAR yang digunakan dalam menduga kerusakan mangrove. Data tinggi pohon dan tutupan tajuk di lapangan dikumpulkan dan diintegrasikan dengan data GEDI, kemudian dianalisis secara regresi sehingga menghasilkan model regresi eksponensial dengan persamaan CC= 35,863e^0,06x. Berdasarkan hasil analisis, luas kawasan mangrove yang teridentifikasi mengalami kerusakan mencapai 295,2 ha. Berdasarkan standar SNI 7717-2020, mangrove yang masuk ke dalam kelas jarang, sedang, dan rapat secara berturut-turut sebanyak 40,89%, 58,74%, dan 0,37%.
       
      Mangroves are critical coastal ecosystems that continue to face increasing degradation. Mapping mangrove damage is essential for effective rehabilitation and management. The Global Ecosystem Dynamics Investigation (GEDI) platform offers high-resolution three-dimensional forest structure data using Light Detection and Ranging (LiDAR) technology, which can be utilized to detect and assess mangrove degradation. This study aims to develop an estimation model of mangrove canopy cover density using LiDAR data, which serves as a basis for assessing the extent of mangrove degradation. Field data on tree height and canopy cover were collected and combined with GEDI-derived metrics, followed by regression analysis. The resulting exponential regression model, expressed as CC = 35,863e^0,06x, enables the spatial identification of degraded mangrove areas. The analysis revealed that approximately 295,2 ha of mangrove forest in the study area exhibited signs of degradation. Based on the Indonesian National Standard (SNI 7717-2020), mangrove density was m classified into sparse (40,89%), moderate (58,74%), and dense (0,37%) categories.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/163638
      Collections
      • UT - Conservation of Forest and Ecotourism [2495]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository